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Abstract 

The issue of SOC testing is one of the most crucial in 
their design and production process. A popular solution 
for SOCs including microprocessor cores is based on 
letting them execute a test program, thus implementing a 
very attracting BIST solution. This paper describes a 
method for the generation of effective programs for the 
self-test of a processor starting from its RT-level 
description. The method can be partially automated, and 
combines ideas from traditional functional approaches 
and from the ATPG field. We are preliminary assessing 
the feasibility and effectiveness of the method by applying 
it to an 8051 core. 

1. Introduction 

Current technology allows integrating enormous 
numbers of transistors, embedding entire systems on 
single chips, building the so-called systems-on-a-chip 
(SOCs). These SOCs may be fairly elaborated and include 
complex cells like microprocessors or MPEG encoders-
decoders, together with ASICs, peripherals and memories. 
Many of these complex cells are readily available as 
Intellectual Property (IP) cores, designed by third parties, 
and easily includable in designs. 

Today, it is a common practice to design, simulate and 
synthesize SOCs entirely at the RT level. The increasing 
demands for tools enabling the design of digital circuits at 
high levels of abstraction already pushed the development 
of synthesis and simulation technologies. However, not all 
design activities have already migrated from gate to RT 
level (or are not yet mature enough to). Despite many 
efforts in high-level design for testability, testable 
synthesis and test pattern generation [1], tackling 
testability at high levels can be still considered an open 
problem. 

Additionally, testability at RT level is particularly 
critical for IP cores implementing microprocessors, or 
microcontrollers, since standard ATPG techniques are 
seldom exploitable. In fact, microprocessor test requires 
semantically meaningful and syntactically correct 
sequences of instructions. Moreover, microprocessor 
internal structure is often based on a sequentially complex 
decode and control unit that decodes instructions and 
sends the appropriate control signals to a large data-path, 
which may also include hard-to-test elements such as 
multipliers and dividers. It may be maintained that testing 
microprocessors cores at the gate level is a challenging 
task, but automatically testing them from the RT level is 
still more of a dream than a reality. However, several 
research proposals in this field already present some 
promising results: in this paper, we propose an approach 
based on manual creation of macro-instructions and on 
automatic simulation-based selection of most promising 
macros. The approach is fully based on the RT-level 
VHDL description of the processor and exploits a custom 
RT-level fault model. 

The paper is organized as follows. Section 2 outlines 
some basic concepts about the adopted test generation 
strategy as well as about the adopted RT-level fault 
model. Section 3 presents an overview of the test program 
generation approach we propose. Section 4 reports some 
preliminary experimental results assessing the 
effectiveness of our approach, and Section 5 draws some 
conclusions.  

2. Test Strategy 

Traditionally, microprocessors were tested by resorting 
to functional approaches based on exciting all the 
functions and resources described in data-sheets [9], but 
this approach involves a extremely high amount of 
manual work performed by skilled programmers. 
Recently, Dey et al. proposed a deterministic method 



named DEFUSE [4] to generate test programs able to 
reach a good Fault Coverage on the ALU of a 
microprocessor, and to compact the result. The approach 
is very effective with easily testable parts (e.g., simple 
ALUs), but shows some limitation when hard-to-test 
modules, such as Control Units, are addressed. Another 
approach has been proposed by Batcher and Papachristou 
[2] that is based on a random sequence of instructions, but 
it also requires the insertion of additional hardware in the 
microprocessor under test. Presently, Bose et al. are 
working on biased random instruction generators for 
architectural verification and on-line testing of 
microprocessors [3]. 

In [7], we proposed an approach that requires only a 
limited amount of manual work and that is applicable 
whenever the netlist, although encrypted, is available for 
simulation. The approach is based on the automatic 
cultivation of high-level test programs. These test 
programs are built from a set of generic pre-computed 
high-level macros, exploiting a greedy search and an 
evolutionary optimization algorithm. Once the test 
program is generated, it is fault-simulated against the 
gate-level netlist. 

In detail, the approach was based on three steps: 
• Designers, referring to microprocessor data-

sheets, list available addressing modes and 
categorize instructions in classes. 

• Designers identify a library of macros, each 
composed of a short sequence of instructions, 
and able of testing a part of control unit and data-
path. Each macro owns several parameters, 
corresponding to the operands of the instructions 
it is composed of. 

• The test program attaining a maximal Fault 
Coverage is generated without further human 
intervention, choosing macros from the library 
and setting their parameters. 

We are now modifying this approach in order to handle 
RT-level microprocessor cores. This work presents the 
first results in this migration and a consistent roadmap for 
the implementation of a working microprocessor-cores 
RT-level ATPG. 

In [7], while generation did not take into account any 
low-level structural information, resulting test programs 
were simulated against the IP-core netlist to compute their 
exact fault-coverage figures. Thus, in order to fully 
migrate to the RT level, the first step is to replace this 
gate-level fault simulation with a reliable RT-level test 
metric. 

We adopt observability-enhanced statement coverage 
[8] and we refine it by using explicit RT-level single-bit 
stuck-at’s instead of tags, as present in [5]. An RT-level 
single-bit stuck-at fault is defined as a single-bit stuck-at 
in the effect of an RT-level assignment operation: when a 
fault is present, the affected object (signal or variable 
target of an assignment statement) loads the correct value, 
except for one bit that remains stuck to 0 or 1.  

The use of explicit RT-level single-bit stuck-at’s 
enhances the resolutive power of the metric, but prevents 
several optimizations: each possible stuck-at must be 
simulated individually instead of calculating the delta 
variations. 

3. Test Program Generation 

To perform Test Program Generation we need an 
environment that, starting from the analysis of the VHDL 
description, selects the best macros and their parameters 
in order to create a program able to detect the best number 
of faults.  

After generating the Fault List, analyzing the VHDL 
description according to the RT-Level single-bit stuck-at 
fault model, the faults are injected during the simulation 
whenever the corresponding statement is executed. All the 
faults corresponding to a statement which has been 
executed at least once by the test program are labeled as 
executed.  

The injection of the fault forces a given bit to assume 
the stuck-at value, thus if the value of the bit is always 
equal to the faulty one the faults is not excited; so not all 
the executed faults are excited. When an injected fault 
produces one difference in the behavior of the processor 
(in terms of produced and observable results) it is marked 
as detected. 

As we work on a microcontroller description, we can 
group faults in two classes: 
• detectable independently from macro operands; 
• detectable only using a specific set of macro 

operands. 
In this paper, the faults that belong to the first class are 

called control-dependent faults and the ones belonging to 
the second class are called data-dependent faults. 

Intuitively, we can say that most of the control-
dependent faults are located in the Control Unit and in the 
Instruction Decoder, where the systems decides how to 
elaborate the instruction data. Instead most of the data-
dependent faults are located where data are elaborated, 
such as in the Arithmetic and Logical Unit. 



The algorithm we propose is based on two phases: 
• control-dependent fault detection phase 
• data-dependent fault detection phase. 

The detection of control-dependent faults is based on 
the correct selection of the operative code and the 
addressing mode. The detection of these faults depends on 
which instructions (i.e., which macros) have been 
executed by the microprocessor, independently from a 
specific set of data. 

In this phase each macro in the library is simulated 
with random operands. By means of this procedure the 
VHDL statements executed during the fault-free 
simulation of each macro are identified. The macro that 
executes statements cumulatively corresponding to the 
highest number of undetected faults is selected. The 
selected macro is then fault simulated and, if at least one 
new fault is detected, it is added to the final test program. 

When all the macros of the library have been selected 
and fault simulated, all the macros become selectable 
again and the second phase starts. 

The goal of the second phase is to detect data-
dependent faults. The coverage of these faults depends on 
the arguments of each instruction (i.e., macro operands) 
executed by the microprocessor. 

As in the first phase, the instructions executed by each 
macro of the library are first identified via fault-free 
simulation. The macro that executes the VHDL 
statements corresponding with the highest number of 
undetected faults is selected. 

A hill-climbing algorithm is then activated, whose goal 
is to find the values for the macro operands that maximize 
the number of faults activated by the macro. The hill-
climber runs until the number of activated faults reaches a 
given threshold, or the maximum number of iterations has 
been reached. 

For each fault activated by the selected macro, a 
Genetic Algorithm, detailed in the following, is then 
executed, whose goal is to find the values for the macro 
operands that detect the target fault. 

If the target fault is detected, the macro is added to the 
final test program and a fault dropping phase is activated; 
otherwise, the fault is discarded, to avoid being 
considered again with this macro. 

When all the activated faults have been detected or 
discarded, the algorithm returns to the hill-climber in 
order to try to activate others faults. 

The whole algorithm stops when either the Fault 
Coverage reaches a given threshold, or all the macros 
have been selected and fully considered. 

4. Experimental Results 

In order to practically assess the effectiveness of the 
proposed approach we implemented an Automatic Test 
Program Generator System (ATPGS) whose architecture 
is sketched in Figure 1.  

 

Figure 1: ATPGS Architecture. 

The ATPG system amounts to about 11,000 lines of C 
code including an in-house developed RT-Level Fault 
Simulator based on a commercial VHDL Simulator 
(ModelSim 5.5a by Mentor Graphics). 

The system has been evaluated on a description of the 
Intel 8051 microcontroller, containing the core system 
without peripherals, whose main characteristics are 
summarized in Table 1.  

The Fault Simulator is able to simulate the entire 8051 
while it executes the program stored in the embedded 
ROM, injecting RT-level single bit stuck-at faults in 
VHDL code. A library of 115 macros is exploited, each 
composed of a number of instructions that ranges from 3 
to 6. 

Primary inputs 41 
Primary outputs 45 
VHDL lines 13,583 
Processes 6 
Procedures 29 
RT-level faults 15,387 
Gates 12,134 
Flip flops 1,325 
Gate-level faults 28,792 

Table 1: 8051 description characteristics. 
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The experiments have been performed on a Sun 
Enterprise 250 running at 400 MHz and equipped with 2 
GBytes of RAM. 

The ATPGS is based on using a set of heuristics (i.e., 
greedy, hill climber and genetic), select the most suitable 
macros and the values for their parameters to create the 
test program. 

To assess the effectiveness of the technique we 
propose, we used it to create a test program: the RT-level 
ATPG was first run, with the goal of maximizing the 
Fault Coverage based on the RT-level fault model and a 
test program was obtained. This test program was also 
simulated at gate-level to obtain gate-level Fault 
Coverage. Results in Table 2. For comparison purposes, a 
second set of experiments was then performed: the RT-
level description of the 8051 was  synthesized and we ran 
the gate-level ATPG described in [7]. Result in Table 3. 
The whole procedure adopted for the experiments is 
outlined in Figure 2. 

 

Figure 2: Experimental setup for comparison proposes. 

The reported results show that no matter the fact that it 
exploits the proposed technique provides Fault Coverage 
figures higher than the gate-level ones, with a slight 
increase in the length of the final test program (in terms of 
number of instructions). 

Before the proposed method is evaluated in terms of 
required computational effort, it must be first emphasized 
that in the current implementation of the tool RT-level 
Fault Simulation is performed exploiting a commercial 
VHDL simulator. The interaction with it is necessarily 
loose, and therefore slow. However, if the method were 
be integrated in the code of the simulator, a much higher 
efficiency would be attained. For this reason, we adopted 
as a parameter the number of 8051 instructions simulated 

by ATPGS during the test program generation phase. This 
number is equal to about two million instructions, and 
roughly corresponds to the number of instructions 
simulated by the gate-level ATPG described in [7]. 

 
RT-level faults [#] 15,387 
Executed faults [#] 13,364 
Excited faults [#] 12,263 
Detected faults [#] 12,122 
Test Program Instructions [#] 883 
RT-level Fault Coverage [%] 78.78 
Gate-level  Fault Coverage [%] 89.47 

Table 2: Test Program generation from RT-level 
description. 

Gate-level faults [#] 28,792 
Detected faults [#] 25,759 
Test Program Instructions [#] 624 
Gate-level  Fault Coverage [%] 85.19 

Table 3: Test Program generation from gate-level 
description. 

5. Conclusions 

We introduced a new method for generating test 
programs for microprocessors and microcontrollers. The 
main novelty of the proposed approach lies in the fact that 
it only relies on the RT-level description of the device, 
and does not exploit any knowledge about lower-level 
implementation details. The method requires the 
availability of a small library of macros, whose 
development should be performed by hand, based on the 
mere knowledge of the instruction set. An optimization 
algorithm is outlined for selecting the minimal subset of 
macros, and their parameters. The algorithm entirely 
works on the RT-level description, and therefore exploits 
a suitable RT-level fault model. 

Experimental results gathered on the Intel 8051 
microcontroller using a prototypical implementation of 
the method show that the generated test program attains 
higher fault coverage figures (in terms of gate-level stuck-
at faults) than the test program generated starting from the 
gate-level description, thus demonstrating the practical 
viability of the approach. 
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