
Devising an RT-Level ATPG for µProcessor Cores

F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24

10129 Torino, Italy

Abstract

The issue of SOC testing is one of the most crucial in
their design and production process. A popular solution
for SOCs including microprocessor cores is based on
letting them execute a test program, thus implementing a
very attracting BIST solution. This paper describes a
method for the generation of effective programs for the
self-test of a processor starting from its RT-level
description. The method can be partially automated, and
combines ideas from traditional functional approaches
and from the ATPG field. We are preliminary assessing
the feasibility and effectiveness of the method by applying
it to an 8051 core.

1. Introduction

Current technology allows integrating enormous
numbers of transistors, embedding entire systems on
single chips, building the so-called systems-on-a-chip
(SOCs). These SOCs may be fairly elaborated and include
complex cells like microprocessors or MPEG encoders-
decoders, together with ASICs, peripherals and memories.
Many of these complex cells are readily available as
Intellectual Property (IP) cores, designed by third parties,
and easily includable in designs.

Today, it is a common practice to design, simulate and
synthesize SOCs entirely at the RT level. The increasing
demands for tools enabling the design of digital circuits at
high levels of abstraction already pushed the development
of synthesis and simulation technologies. However, not all
design activities have already migrated from gate to RT
level (or are not yet mature enough to). Despite many
efforts in high-level design for testability, testable
synthesis and test pattern generation [1], tackling
testability at high levels can be still considered an open
problem.

Additionally, testability at RT level is particularly
critical for IP cores implementing microprocessors, or
microcontrollers, since standard ATPG techniques are
seldom exploitable. In fact, microprocessor test requires
semantically meaningful and syntactically correct
sequences of instructions. Moreover, microprocessor
internal structure is often based on a sequentially complex
decode and control unit that decodes instructions and
sends the appropriate control signals to a large data-path,
which may also include hard-to-test elements such as
multipliers and dividers. It may be maintained that testing
microprocessors cores at the gate level is a challenging
task, but automatically testing them from the RT level is
still more of a dream than a reality. However, several
research proposals in this field already present some
promising results: in this paper, we propose an approach
based on manual creation of macro-instructions and on
automatic simulation-based selection of most promising
macros. The approach is fully based on the RT-level
VHDL description of the processor and exploits a custom
RT-level fault model.

The paper is organized as follows. Section 2 outlines
some basic concepts about the adopted test generation
strategy as well as about the adopted RT-level fault
model. Section 3 presents an overview of the test program
generation approach we propose. Section 4 reports some
preliminary experimental results assessing the
effectiveness of our approach, and Section 5 draws some
conclusions.

2. Test Strategy

Traditionally, microprocessors were tested by resorting
to functional approaches based on exciting all the
functions and resources described in data-sheets [9], but
this approach involves a extremely high amount of
manual work performed by skilled programmers.
Recently, Dey et al. proposed a deterministic method

named DEFUSE [4] to generate test programs able to
reach a good Fault Coverage on the ALU of a
microprocessor, and to compact the result. The approach
is very effective with easily testable parts (e.g., simple
ALUs), but shows some limitation when hard-to-test
modules, such as Control Units, are addressed. Another
approach has been proposed by Batcher and Papachristou
[2] that is based on a random sequence of instructions, but
it also requires the insertion of additional hardware in the
microprocessor under test. Presently, Bose et al. are
working on biased random instruction generators for
architectural verification and on-line testing of
microprocessors [3].

In [7], we proposed an approach that requires only a
limited amount of manual work and that is applicable
whenever the netlist, although encrypted, is available for
simulation. The approach is based on the automatic
cultivation of high-level test programs. These test
programs are built from a set of generic pre-computed
high-level macros, exploiting a greedy search and an
evolutionary optimization algorithm. Once the test
program is generated, it is fault-simulated against the
gate-level netlist.

In detail, the approach was based on three steps:
• Designers, referring to microprocessor data-

sheets, list available addressing modes and
categorize instructions in classes.

• Designers identify a library of macros, each
composed of a short sequence of instructions,
and able of testing a part of control unit and data-
path. Each macro owns several parameters,
corresponding to the operands of the instructions
it is composed of.

• The test program attaining a maximal Fault
Coverage is generated without further human
intervention, choosing macros from the library
and setting their parameters.

We are now modifying this approach in order to handle
RT-level microprocessor cores. This work presents the
first results in this migration and a consistent roadmap for
the implementation of a working microprocessor-cores
RT-level ATPG.

In [7], while generation did not take into account any
low-level structural information, resulting test programs
were simulated against the IP-core netlist to compute their
exact fault-coverage figures. Thus, in order to fully
migrate to the RT level, the first step is to replace this
gate-level fault simulation with a reliable RT-level test
metric.

We adopt observability-enhanced statement coverage
[8] and we refine it by using explicit RT-level single-bit
stuck-at’s instead of tags, as present in [5]. An RT-level
single-bit stuck-at fault is defined as a single-bit stuck-at
in the effect of an RT-level assignment operation: when a
fault is present, the affected object (signal or variable
target of an assignment statement) loads the correct value,
except for one bit that remains stuck to 0 or 1.

The use of explicit RT-level single-bit stuck-at’s
enhances the resolutive power of the metric, but prevents
several optimizations: each possible stuck-at must be
simulated individually instead of calculating the delta
variations.

3. Test Program Generation

To perform Test Program Generation we need an
environment that, starting from the analysis of the VHDL
description, selects the best macros and their parameters
in order to create a program able to detect the best number
of faults.

After generating the Fault List, analyzing the VHDL
description according to the RT-Level single-bit stuck-at
fault model, the faults are injected during the simulation
whenever the corresponding statement is executed. All the
faults corresponding to a statement which has been
executed at least once by the test program are labeled as
executed.

The injection of the fault forces a given bit to assume
the stuck-at value, thus if the value of the bit is always
equal to the faulty one the faults is not excited; so not all
the executed faults are excited. When an injected fault
produces one difference in the behavior of the processor
(in terms of produced and observable results) it is marked
as detected.

As we work on a microcontroller description, we can
group faults in two classes:
• detectable independently from macro operands;
• detectable only using a specific set of macro

operands.
In this paper, the faults that belong to the first class are

called control-dependent faults and the ones belonging to
the second class are called data-dependent faults.

Intuitively, we can say that most of the control-
dependent faults are located in the Control Unit and in the
Instruction Decoder, where the systems decides how to
elaborate the instruction data. Instead most of the data-
dependent faults are located where data are elaborated,
such as in the Arithmetic and Logical Unit.

The algorithm we propose is based on two phases:
• control-dependent fault detection phase
• data-dependent fault detection phase.

The detection of control-dependent faults is based on
the correct selection of the operative code and the
addressing mode. The detection of these faults depends on
which instructions (i.e., which macros) have been
executed by the microprocessor, independently from a
specific set of data.

In this phase each macro in the library is simulated
with random operands. By means of this procedure the
VHDL statements executed during the fault-free
simulation of each macro are identified. The macro that
executes statements cumulatively corresponding to the
highest number of undetected faults is selected. The
selected macro is then fault simulated and, if at least one
new fault is detected, it is added to the final test program.

When all the macros of the library have been selected
and fault simulated, all the macros become selectable
again and the second phase starts.

The goal of the second phase is to detect data-
dependent faults. The coverage of these faults depends on
the arguments of each instruction (i.e., macro operands)
executed by the microprocessor.

As in the first phase, the instructions executed by each
macro of the library are first identified via fault-free
simulation. The macro that executes the VHDL
statements corresponding with the highest number of
undetected faults is selected.

A hill-climbing algorithm is then activated, whose goal
is to find the values for the macro operands that maximize
the number of faults activated by the macro. The hill-
climber runs until the number of activated faults reaches a
given threshold, or the maximum number of iterations has
been reached.

For each fault activated by the selected macro, a
Genetic Algorithm, detailed in the following, is then
executed, whose goal is to find the values for the macro
operands that detect the target fault.

If the target fault is detected, the macro is added to the
final test program and a fault dropping phase is activated;
otherwise, the fault is discarded, to avoid being
considered again with this macro.

When all the activated faults have been detected or
discarded, the algorithm returns to the hill-climber in
order to try to activate others faults.

The whole algorithm stops when either the Fault
Coverage reaches a given threshold, or all the macros
have been selected and fully considered.

4. Experimental Results

In order to practically assess the effectiveness of the
proposed approach we implemented an Automatic Test
Program Generator System (ATPGS) whose architecture
is sketched in Figure 1.

Figure 1: ATPGS Architecture.

The ATPG system amounts to about 11,000 lines of C
code including an in-house developed RT-Level Fault
Simulator based on a commercial VHDL Simulator
(ModelSim 5.5a by Mentor Graphics).

The system has been evaluated on a description of the
Intel 8051 microcontroller, containing the core system
without peripherals, whose main characteristics are
summarized in Table 1.

The Fault Simulator is able to simulate the entire 8051
while it executes the program stored in the embedded
ROM, injecting RT-level single bit stuck-at faults in
VHDL code. A library of 115 macros is exploited, each
composed of a number of instructions that ranges from 3
to 6.

Primary inputs 41
Primary outputs 45
VHDL lines 13,583
Processes 6
Procedures 29
RT-level faults 15,387
Gates 12,134
Flip flops 1,325
Gate-level faults 28,792

Table 1: 8051 description characteristics.

ATPGS

Fault
Manager

VHDL
Description

Fault
List

Macro
Library

RT-Level
Simulator

Core

Fault
Injector

Test
Program

The experiments have been performed on a Sun
Enterprise 250 running at 400 MHz and equipped with 2
GBytes of RAM.

The ATPGS is based on using a set of heuristics (i.e.,
greedy, hill climber and genetic), select the most suitable
macros and the values for their parameters to create the
test program.

To assess the effectiveness of the technique we
propose, we used it to create a test program: the RT-level
ATPG was first run, with the goal of maximizing the
Fault Coverage based on the RT-level fault model and a
test program was obtained. This test program was also
simulated at gate-level to obtain gate-level Fault
Coverage. Results in Table 2. For comparison purposes, a
second set of experiments was then performed: the RT-
level description of the 8051 was synthesized and we ran
the gate-level ATPG described in [7]. Result in Table 3.
The whole procedure adopted for the experiments is
outlined in Figure 2.

Figure 2: Experimental setup for comparison proposes.

The reported results show that no matter the fact that it
exploits the proposed technique provides Fault Coverage
figures higher than the gate-level ones, with a slight
increase in the length of the final test program (in terms of
number of instructions).

Before the proposed method is evaluated in terms of
required computational effort, it must be first emphasized
that in the current implementation of the tool RT-level
Fault Simulation is performed exploiting a commercial
VHDL simulator. The interaction with it is necessarily
loose, and therefore slow. However, if the method were
be integrated in the code of the simulator, a much higher
efficiency would be attained. For this reason, we adopted
as a parameter the number of 8051 instructions simulated

by ATPGS during the test program generation phase. This
number is equal to about two million instructions, and
roughly corresponds to the number of instructions
simulated by the gate-level ATPG described in [7].

RT-level faults [#] 15,387
Executed faults [#] 13,364
Excited faults [#] 12,263
Detected faults [#] 12,122
Test Program Instructions [#] 883
RT-level Fault Coverage [%] 78.78
Gate-level Fault Coverage [%] 89.47

Table 2: Test Program generation from RT-level
description.

Gate-level faults [#] 28,792
Detected faults [#] 25,759
Test Program Instructions [#] 624
Gate-level Fault Coverage [%] 85.19

Table 3: Test Program generation from gate-level
description.

5. Conclusions

We introduced a new method for generating test
programs for microprocessors and microcontrollers. The
main novelty of the proposed approach lies in the fact that
it only relies on the RT-level description of the device,
and does not exploit any knowledge about lower-level
implementation details. The method requires the
availability of a small library of macros, whose
development should be performed by hand, based on the
mere knowledge of the instruction set. An optimization
algorithm is outlined for selecting the minimal subset of
macros, and their parameters. The algorithm entirely
works on the RT-level description, and therefore exploits
a suitable RT-level fault model.

Experimental results gathered on the Intel 8051
microcontroller using a prototypical implementation of
the method show that the generated test program attains
higher fault coverage figures (in terms of gate-level stuck-
at faults) than the test program generated starting from the
gate-level description, thus demonstrating the practical
viability of the approach.

RT-Level
ATPG

Macro
Library

Gate-Level
ATPG

NetlIst

Syntesis

Gate-Level
Fault Simulator

RT-Level
Fault Simulator

VHDL
Description

Gate
FC%

RT
FC%

Gate
FC%

Gate-Level
Fault Simulator

6. References

[1] High Time for High-Level Test Generation,
Panel at ITC99: International Test Conference,
1999

[2] K. Batcher, C. Papachristou, “Instruction
Randomization Self Test For Processor Cores”,
Proceedings IEEE VLSI Test Symposium, 1999

[3] M. Bode, E. M. Rudnick, M. Abadir, “Automatic
Bias Generation using Pipeline Instruction State
Coverage for Biased Random Instruction
Generation”, Proceedings 7th On-Line Test
Workshop, July 2001, pp. 65-17

[4] L. Chen, S. Dey, “DEFUSE: A Deterministic
Functional Self-Test Methodology for Processors”,
Proceedings IEEE VLSI Test Symposium, 2000

[5] F. Corno, G. Cumani, M. Sonza Reorda, G.
Squillero, “An RT-level Fault Model with High
Gate Level Correlation”, IEEE International High

Level Design Validation Workshop, The Claremont
Resort & Spa, Berkeley, California, November 8-
10 2000

[6] F. Corno, M. Sonza Reorda, G. Squillero, “RT-
Level ITC 99 Benchmarks and First ATPG
Results”, IEEE Design & Test of Computers, July-
August 2000, pp. 44-53

[7] F. Corno, M. Sonza Reorda, G. Squillero, M.
Violante, “On the Test of Microprocessor IP
Cores”, DATE, IEEE Design, Automation & Test
in Europe Conference, Munich (Germany), 13-16
March 2001, pp. 209-213

[8] F. Fallah, S. Devadas, K. Keutzer, “OCCOM:
Efficient Computation of Observability-Based
Code Coverage Metrics for Functional
Verification,” Proceedings 34th Design Automation
Conference, 1998

[9] S. Thatte, J. Abraham, “Test Generation for
Microprocessors”, IEEE Transaction on
Computers, Volume 29, 1980

