
RT-level Fault Simulation Techniques based on Simulation
Command Scripts

Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda, Giovanni Squillero
Politecnico di Torino

Dipartimento di Automatica e Informatica
http://www.cad.polito.it/

Abstract

With the advent of new RT-level design and test flow,
new tools are needed to migrate at the RT-level the
activities of fault simulation, testability analysis, and
test pattern generation. This paper focuses on fault
simulation at the RT-level, and aims at exploiting the
capabilities of commercial VHDL simulators to com-
pute faulty responses without modifying the VHDL
source code. The proposed approach was implemented
as a prototypical tool, and experimental results show
that simulation of a faulty circuit is no more costly than
simulation of the original circuit. For defining RT-level
faults, we adopted a refinement of the observability-
enhanced statement coverage metric. While this metric
usually handles observability in an approximated way,
we were able to efficiently and exactly determine the
observability of single-bit stuck-at faults on all assign-
ment statements.

1.Introduction
The increasing complexity of electronic components

may be faced only by boosting designer productivity
through a gradual shift towards higher abstraction levels
and to significant amounts of design reuse. Nowadays,
most digital ASICs are designed at the RT-level, thanks
to the availability and maturity of HDL synthesis tools.
Other design activities, such as power estimation and
testing, are lacking behind this trend, and are still per-
formed mainly at the gate level. In this paper, we focus
on fault simulation at the RT-level, an open issue that is
expected to gain high industrial relevance with the
advent of high level testability flows and that is proven
to yield good coverage with actual defects [SGTT00].

In recent years, several research activities contrib-
uted to pushing testability related issues to the RT-level,
including the proposal of several fault models
[DGKe96] [TAZa99] [RiUc96], the development of
fault simulators [FiFu00] [FDKe98] or testability ana-
lyzers, and of some test pattern generators [FFSc98]
[CSSq00b] [FADe99].

The hardest theoretical barrier to the diffusion of
test-related tools at the RT-level is the lack of widely
accepted fault models. Several variants of high level
faults (or testability metrics) have been proposed, and
their relationships with stuck-at faults has been shown,
either experimentally or theoretically, but such results
are generally limited to some specific class of circuits.
No single fault model is universally accepted, since no
comprehensive and general results, valid for all classes
of circuits, are known yet.

Most fault modeling approaches rely on high-level
fault models for behavioral HDL descriptions which
have been developed by the current practice of software
testing [Beiz90] and extending them to cope with hard-
ware descriptions. In this sense, a high-level fault model
corresponds to a metric that measures the goodness of a
given sequence of input vectors.

The fault model chosen in this paper is an instantia-
tion of the observability enhanced statement coverage
metric proposed in [DGKe96] and [FDKe98]. This fault
model requires all statements in the VHDL description
to be executed at least once, and their effects propa-
gated to at least one primary output. Propagation is
modeled implicitly, by determining whether the faulty
statement may influence the output values but without
hypothesizing any specific faulty value: in some cases,
heuristics are needed to resolve non-determinism, and
the meaningfulness of the resulting fault coverage is
affected by these approximations. While this approach
can be fruitfully exploited for test pattern generation
[FADe99] [CSSq00b], for fault simulation we need
more accurate results.

In this paper we thus adopt a particular instantiation
of the observability enhanced statement coverage met-
ric, and in particular we model single stuck-at bit faults
on all assignment targets of the executed statements.
With this choice, a concrete faulty behavior is simu-
lated, and fault propagation can therefore be performed
exactly, by computing the faulty machine evolution.
This fault model implies observability enhanced state-

ment coverage, since it models one of the possible fault
classes on executed statements.

The most important technical barrier is the lack of
efficient fault simulators, once a fault model is chosen.
Fault simulation algorithms for RT-level designs are
known since more than a decade, even if they mainly
target structural-style descriptions rather than behav-
ioral-style ones, but commercial tools usually don’t
include these capabilities. Classical algorithms are diffi-
cult to integrate in HDL simulators, mainly due to the
complexity and to the several peculiarities of HDL
languages. Until some fault model becomes widely
accepted, this situation is not likely to change, because
CAD vendor have no good reason to invest yet.

The main goal of this paper is to present an approach
that allows fault simulation at the RT-level of VHDL
descriptions, by interacting with a standard commercial
VHDL simulator. The approach is based on exploiting
debugging mechanisms inherent with the chosen VHDL
simulator and exposed through the scripting language
interface, such as breakpoints, script and TCL pro-
gramming, and signal traces, and allows an accurate and
fast simulation of faulty behaviors through a minimally
invasive procedure. Other approaches were formerly
proposed in [RiUc96], where for each fault a newly
modified VHDL description was built, compiled, and
simulated, and in [FiFu00], where a single modified
VHDL model foresaw all the possible single and multi-
ple fault locations and values. In our approach, VHDL
descriptions are never modified, so that simulation
always proceeds at full speed for all the circuit except
the fault insertion point, and more complex VHDL
constructs can be accepted at little implementation cost.

Section 2 of this paper gives a more formal defini-
tion of the selected fault model, Section 3 describes the
algorithm and the implementation of the proposed fault
simulation tool. Some experimental results showing the
feasibility of the approach are then presented in Section
4, and Section 5 finally concludes the paper.

2. Fault Model
Fault models taken from software-testing [Beiz90]

have three main advantages: they are well known and
quite standardized; they require little calculations, apart
from the complete simulation of the fault-free system;
and they are already embedded in some commercial
tools. However, while such metrics may be useful to
validate the correctness of a design [CSSq00], they are
usually inadequate to foresee the gate-level fault cover-
age with high degree of accuracy.

To improve accuracy, some researchers extended
software metrics to cope with the peculiarities of hard-
ware descriptions. Fallah et al. [FADe99] [FDKe98]

proposed Observability-Enhanced Statement Coverage.
They define the concept of tag as the possibility that an
incorrect value is computed at a given location. Differ-
ent tags are first injected in any possible location and
then propagated during the simulation. The observabil-
ity-enhanced statement coverage metric computes the
number of tags that reach an observable circuit output
when the test pattern is applied.

In this paper we adopt observability-enhanced state-
ment coverage and we refine it by using explicit RT-
Level single-bit stuck-at’s instead of tags. An RT-level
single-bit stuck-at fault is defined as a single-bit stuck-
at in the effect of an RT-level assignment operation:
when a fault is present, the affected object (signal or
variable target of an assignment statement) loads the
correct value, except for one bit that remains stuck to 0
or 1.

As in [DGKe96], faults are single and permanent:
only one fault is inserted at a time and the fault effect is
present during the whole simulation. The RT-Level
single-bit stuck-at fault model does not explicitly con-
sider control-flow faults, such as stuck-at-true or stuck-
at-false, as [RiUc96] does.

In more details:
• For bit signals or variables, the fault forces the

value of 0 or 1 regardless the actual value. No
other values (e.g., ‘Z’) are considered.

• In bit vector signals or variables, each single ele-
ment is considered separately as a bit.

• Integer signals or variables are translated into the
equivalent bit vectors according to synthesis con-
ventions. Range checks are neglected in the result-
ing vector.

• Enumerated signals or variables are translated into
integers and bounds are ignored. If a fault forces
an enumerated object to an illegal value causing
the simulator to stop, it is marked as detected.

• Faults on input ports are taken into account by
considering the operation of setting an external
value to a primary input as an implicit assignment
operation.

• Concurrent expressions are translated into their
equivalent processes.

• VHDL hierarchy is flattened, thus a process in-
stantiated more than once is seen as multiple proc-
esses.

3. Fault Simulation Environment

3.1.General architecture
In order to verify the feasibility of the proposed fault

simulation technique, we developed a prototype imple-
mentation of a Fault Simulator that, starting from a

VHDL description at the RT-level, a Fault List of sin-
gle-bit stuck-at faults and a Test Pattern, creates a list of
detected and undetected faults.

To perform Fault Simulation we use a serial fault
simulation strategy, and we simulate the good and each
faulty machine, comparing their outputs. To run the
simulations, the Test Pattern is first transformed to a set
of commands that force the correct waveform for input
signals, and the Fault List is transformed to a set of
script commands for injecting faults during simulation.

 Starting from the above considerations we devel-
oped Fault Detector System composed of the following
elements:
• Fault List Generator: tool that extracts informa-

tion (signal/variable names, hierarchy, type and
source code line) from the analysis of VHDL
Source code and creates the Fault List based on
the proposed fault model.

• Fault Simulator: tool composed of a set of rou-
tines interacting with the VHDL simulator. It
simulates the circuit described by the VHDL
Source using the Test Pattern and injects the faults
present in the Fault List, creating a list of Detected
Faults.

3.2.The fault list
As a preliminary step, for each design we extract a

complete list of faults, by analyzing the VHDL source
code and enumerating faults on input signals and on
internal signals and variables. We analyze the code with
the help of the LEDA VHDL*Verilog System database
and of ModelSim EE 5.1g scripts, and we obtain input
signal names and types and assignment instructions
with their VHDL source lines. By parsing assignment
instructions we determine the signal or variable name
and type. For hierarchical descriptions, the above analy-
sis is preceded by flattening of the hierarchy, where
multiply instantiated processes are considered different.

Information obtained by the VHDL source code
analysis is collected in the Fault List. For each bit of
each signal and variable we generate two Fault List
entries, for the stuck-at ‘1’ and stuck-at ‘0’ faults, con-
taining the above information. Each fault is described
by a tuple composed of: VHDL source file name,
source line (not relevant for input faults), the target type
(input, signal or variable), target hierarchical name, bit
position, stuck-at value and some fault detection infor-
mation. After simulation, each entry is updated with the
indication of fault status (detected or undetected) and
the number of the pattern detected it.

3.3.The Fault Simulator
The Fault Simulator is the core of the Fault Detector

Architecture. This part of the tool injects faults accord-
ing to a serial fault simulation methodology: for each
fault, the entire test pattern is simulated, and outputs are
compared. Several optimization can be implemented
over this basic scheme, and will be the subject of further
work, while the current implementation already proves
the feasibility of the approach. A pseudo code descrip-
tion of the Fault Simulator is reported in Figure 1.

ReadFaultList();
ReadTestPatterns();
InitializeSimulator();
/* simulate the good machine */
Simulate(good);
StoreOutputs(good);
for(each fault)
{
 /* simulate the faulty machine */
 InjectFault(fault);
 Simulate(fault);
 if (CompareOutputs(good, fault) == DIFFER)
 UpdateFaultList(fault, DETECTED);
 else
 UpdateFaultList(fault, UNDETECTED);
}

Figure 1: Fault Simulator Algorithm

3.4.Fault Injection Strategy
The core of the Fault Simulator is the Fault Injection

procedure. Several different approaches for injection of
permanent faults in VHDL descriptions are possible,
some of which have already been proposed in the litera-
ture:
• Changing the VHDL code: original VHDL in-

structions are enriched by the code necessary to
inject the fault and new input signals are added to
control fault injection [FiFu00]. This technique
significantly slows down simulation, because the
additional source lines are always simulated, also
when they are not used to inject the fault.

• Modifying the simulator: the code necessary to
inject and detect faults is added into simulator
source code. This technique is probably the fastest
fault injection methodology, and promises to
simulate each faulty machine as fast as the fault
free circuit, and is extremely powerful, because
one may change any parameter or register during
simulation. The problem of this technique is the
availability of the source code of a good simula-
tor.

• Interacting with the simulator: faults are in-
jected through the simulator user interface using
simulation commands. This technique is less pow-
erful than modifying the simulator, but during
simulation it is nearly as fast. In fact, no additional
source code is present and commands are active
only when the fault is injected.

Our fault injection system belongs to the third meth-
odology. Fault injection is made possible by creating
routines that change the target signal/variable bit value
during simulation, using the simulator scripting lan-
guage (TCL), when a given target assignment instruc-
tion is executed.

The chosen fault injection methodology must face
various issues derived from the fault model, from
VHDL Semantics and from the simulator itself.

The chosen fault model considers both input signals
and internal signals or variables: while the fault model
definition treats them uniformly, form the implementa-
tion point of view they are different. The former ones,
subject of no assignment instruction, do not correspond
to a source code line identifiable as target during the
simulation, while the latter may be written several times
in the VHDL description, thus preventing a statically
“forced” assignment of the faulty bit. Two different
fault injection methods must therefore be used: one for
input signals and one for internal signals or variables.
Input signals can be modified before simulation starts,
but internal variables and signals must be changed dur-
ing simulation, whenever the target assignment instruc-
tion is executed.

VHDL semantics specify that signals change at wait
statements and variables change immediately. Conse-
quently internal signals and variables must be treated in
different ways during fault injection. Variables can be
changed immediately after the execution of an assign-
ment instruction; signals instead may be changed only
just before the execution of the wait statement (or of the
last line of the process, if the wait statement is implicit).

The simulator limits interaction to the commands
exposed through the scripting user interface. All the
commands necessary to inject the fault must therefore
respect the syntax and the timing of the simulator. Spe-
cifically, the ModelSim simulator accepts simulation
commands and TCL routines. In our case, fault injec-
tion is performed through insertion of appropriate
breakpoints at target instructions.

Due to the above restrictions, we use two different
approaches to inject faults: pre-simulation fault injec-
tion for input signal faults and run-time fault injection
for internal faults. Fortunately, no distinction needs to
be made concerning the data type of the involved sig-
nals and variables, since the simulator interface allows

us to treat all object as bit vectors, regardless of their
original type (bit, bit vector, integer, enumerated, …).

Pre-simulation fault injection consists of changing
the target bit value of an input signal before simulation
starts (during the waveform definition phase) forcing it
at the stuck-at value. Pre-simulation fault injection is
fast as a normal simulation because no delay is added to
inject faults.

Run-time fault injection consists of changing the tar-
get bit value of the assignment instruction selected
during the simulation. Breakpoints are used in this case:
before simulation starts, a breakpoint is set on the
VHDL source line where fault is located. The Fault List
file contains all the information necessary to injected
the fault. Embedded in the breakpoint instruction there
are two different routines depending on the type (vari-
able or signal) of the assignment instruction target.

If the target is a variable, the instruction is executed,
then the given bit of the variable is changed and simula-
tion is continued.

If the target is a signal a more sophisticated double-
breakpoint technique is needed, to avoid modifying the
signal values in advance with respect to VHDL signal
propagation semantics. In the double-breakpoint tech-
nique, a breakpoint is set at the source code line where
the wait statement or the last instruction is placed and
simulation continues without modifying anything. This
new breakpoint, that will be activated only when the
wait statement (explicit or implicit) is about to be exe-
cuted, forces the given bit of the signal to the stuck-at
value and unsets itself before continuing the simulation.

Run-time fault injection using the breakpoint tech-
nique slows down simulation by a really negligible
amount. In fact, breakpoints are optimized by the simu-
lator and impact on the simulation only when the target
statements are executed, and the fault is injected.

4. Experimental results
Starting from the proposed fault model and consider-

ing all the constraints described above, we implemented
two programs, the Fault List Generator and the Fault
Simulator. The implementation consists of about 300
lines of C code for VHDL code analysis and Fault List
creation, linked to the LEDA LPI interface and interact-
ing with the ModelSim simulator, and of 700 lines of C
code for the Fault Simulator, that is interfaced to the
ModelSim simulator through Unix pipes.

To show the feasibility of the Fault Simulation ap-
proach, we selected a subset of the ITC’99 VHDL
benchmarks [D&T2000], whose characteristics are
summarized in Tab. 1. The first columns report some
data about the RT-level descriptions, in terms of VHDL

lines, VHDL processes (with hierarchy unflattened),
and overall number of extracted basic blocks. To have a
better idea about circuit size, we synthesized the circuits
with the Synopsys Design Compiler; data about the
resulting gate-level descriptions are reported in the last
columns, in terms of number of Primary Inputs, Primary
Outputs, Flip-Flops, combinational gates, and uncol-
lapsed and collapsed stuck-at faults.

We extracted the fault lists for the chosen subset of
benchmarks, and fault simulated them with a sample of
pseudo-random input sequences. In the experiments we
performed, the Test Pattern consisted of 500 pseudo-
random vectors arranged as 5 independent sequences. A
reset sequence was applied between each couple of
adjacent sequences. The results obtained by running the
Fault Simulator on a Sun Ultra 5 running at 333 MHz
with 256MB or memory are reported in Tab. 2. For
each circuit we report the percentage of tested targets on
the RT-level description and the CPU Time required by
the Fault Simulator, including CPU time spent by the
VHDL simulator.

The experiments show the feasibility of the proposed
fault simulation methodology: without modifying the
VHDL code nor the VHDL simulator, we are able to
compute the effects of faults on assignment instructions.

Even with this simple random test bench, the simula-
tor already shows different fault coverage figures, al-
lowing us to foresee the random pattern testability in the
initial phases of the design. For instance, we can argue
that the b06 circuit is random pattern resistant, and also
b03 and b09 are difficult to test. Due to the currently
implemented serial fault simulation approach, CPU
times are nearly equal to the time needed to simulate the
test pattern on the fault free circuit, times the number of
faults in the fault list.

Although the fault injection procedures based on
breakpoints are an efficient solution, the current version
of the rest of the algorithm is still at a prototypical
stage, and currently implements a straightforward serial
fault simulation algorithm. In order to reduce the re-
quired CPU time, several optimizations can be imple-
mented by building upon the simulator scripting
mechanisms. Some optimization techniques that will be
explored in the near future are fault collapsing and
untestable faults identification, early output comparison
for halting simulation at the first difference, late simula-
tion start to skip in the simulation of faulty machine the
initial subset of vectors that does not excite the fault,
and so on.

5.Conclusions
This paper presented an approach to fault simulation

of RT-level description based on exploiting the existing

debug mechanisms of commercial VHDL simulators.
With a relatively moderate effort, an effective fault
simulator can be built by properly programming a
VHDL simulator, with a negligible overhead on simula-
tion time. The implemented fault simulation system is
able to simulate a refined version of the widely used
observability-enhanced statement coverage metric,
where observability is explicitly taken into account in
an exact manner.

Experimental results prove the feasibility of the ap-
proach, and show that access to the source code of a
VHDL simulator or modifications of the VHDL code
are not required in order to compute faulty responses
from a digital circuit. The efficiency of VHDL simula-
tion cores and the versatility of their user interfaces
open up the possibility of greatly optimizing the effi-
ciency of the proposed approach.

References
[Beiz90] B. Beizer, Software Testing Techniques

(2nd ed.), Van Nostrand Rheinold, New
York, 1990

[CPSo97] F. Corno, P. Prinetto, M. Sonza Reorda,
“Testability analysis and ATPG on behav-
ioral RT-level VHDL,” Proceedings IEEE
International Test Conference, 1997, pp.
753-759

[CSSq00] F. Corno, M. Sonza Reorda, G. Squillero,
Exploiting ITC’99 benchmarks for develop-
ing an RT-level ATPG tool, to appear on
IEEE Design & Test, Special issue on
Benchmarking for Design and Test, June
2000

[CSSq00b] F. Corno, M. Sonza Reorda, G. Squillero,
High-Level Observability for Effective
High-Level ATPG, VTS-2000: 18th IEEE
VLSI Test Symposium, May 2000

[DGKe96] S. Devadas, A. Ghosh, K. Keutzer, “An
Observability-Based Code Coverage Met-
ric for Functional Simulation,” Proceed-
ings IEEE/ACM International Conference
on Computer Aided Design, 1996

[FADe99] F. Fallah, P. Ashar, S. Devadas, “Simula-
tion Vector Generation from HDL Descrip-
tions for Observability-Enhanced State-
ment Coverage,” Proceedings 35th Design
Automation Conference, 1999, pp. 666-671

[FDKe98] F. Fallah, S. Devadas, K. Keutzer,
“OCCOM: Efficient Computation of Ob-
servability-Based Code Coverage Metrics
for Functional Verification,” Proceedings
34th Design Automation Conference, 1998

[FFSc98] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit
Test Generation for Behavioral VHDL
Models,” Proceedings IEEE International.
Test Conference, 1998

[FiFu00] A. Fin, F. Fummi, “A VHDL Error Simula-
tor for Functional Test Generation,” Pro-
ceedings of the Design, Automation and
Test Conference, 2000, pp. 390-395

[RiUc96] T. Riesgo, J. Uceda, “A Fault Model for
VHDL Descriptions at the Register Trans-
fer Level,” Proceedings of EURO-
DAC/EURO-VHDL, 1996

[SGTT00] M.B. Santos, F.M. Gonçalves, I.C.
Teixeira, J.P. Teixeira, “RTL-based Func-
tional Test Generation for High Defect
Coverage in Digital SoC,” IEEE European
Test Workshop, 2000

[TAZa99] P. A. Thaker, V. D. Agrawal, M. E.
Zaghloul, “Validation Vector Grade
(VVG): A New Coverage Metric fo Valida-
tion and Test,” Proceedings 15th IEEE
VLSI Test Symposium, 1997, pp. 182-188

VHDL GATE
Circuit Lines Proc BB PI PO FF GATES Total

Faults
Collapsed

Faults
b01 110 1 28 2 2 5 46 258 127
b02 70 1 17 1 1 4 28 150 64
b03 141 1 27 4 4 30 149 822 382
b04 102 1 23 11 8 66 597 3,356 1,477
b06 128 1 25 2 6 9 60 302 151
b07 92 1 21 1 8 49 420 2,404 1,120
b08 89 1 14 9 4 21 167 918 439
b09 103 1 16 1 1 28 159 900 417

Table 1: Benchmark characteristics

Fault Simulation Circuit
Detected

Faults
Total Faults Coverage [%] CPU Time

b01 112 132 84.85 474.24
b02 61 76 80.26 311.74
b03 119 236 50.42 1,215.91
b04 310 412 75.24 3,611.79
b06 48 198 24.24 288.54
b07 218 298 75.24 940.45
b08 98 130 75.38 705.05
b09 138 286 48.25 1,471.57

Table 2: Fault simulation results

