
RT-level Fault Simulation Techniques based on Simulation 
Command Scripts 

Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda, Giovanni Squillero 
Politecnico di Torino 

Dipartimento di Automatica e Informatica 
http://www.cad.polito.it/ 

 

Abstract 

With the advent of new RT-level design and test flow, 
new tools are needed to migrate at the RT-level the 
activities of fault simulation, testability analysis, and 
test pattern generation. This paper focuses on fault 
simulation at the RT-level, and aims at exploiting the 
capabilities of commercial VHDL simulators to com-
pute faulty responses without modifying the VHDL 
source code. The proposed approach was implemented 
as a prototypical tool, and experimental results show 
that simulation of a faulty circuit is no more costly than 
simulation of the original circuit. For defining RT-level 
faults, we adopted a refinement of the observability-
enhanced statement coverage metric. While this metric 
usually handles observability in an approximated way, 
we were able to efficiently and exactly determine the 
observability of single-bit stuck-at faults on all assign-
ment statements. 

1.Introduction 
The increasing complexity of electronic components 

may be faced only by boosting designer productivity 
through a gradual shift towards higher abstraction levels 
and to significant amounts of design reuse. Nowadays, 
most digital ASICs are designed at the RT-level, thanks 
to the availability and maturity of HDL synthesis tools. 
Other design activities, such as power estimation and 
testing, are lacking behind this trend, and are still per-
formed mainly at the gate level. In this paper, we focus 
on fault simulation at the RT-level, an open issue that is 
expected to gain high industrial relevance with the 
advent of high level testability flows and that is proven 
to yield good coverage with actual defects [SGTT00]. 

In recent years, several research activities contrib-
uted to pushing testability related issues to the RT-level, 
including the proposal of several fault models 
[DGKe96] [TAZa99] [RiUc96], the development of 
fault simulators [FiFu00] [FDKe98] or testability ana-
lyzers, and of some test pattern generators [FFSc98] 
[CSSq00b] [FADe99]. 

The hardest theoretical barrier to the diffusion of 
test-related tools at the RT-level is the lack of widely 
accepted fault models. Several variants of high level 
faults (or testability metrics) have been proposed, and 
their relationships with stuck-at faults has been shown, 
either experimentally or theoretically, but such results 
are generally limited to some specific class of circuits. 
No single fault model is universally accepted, since no 
comprehensive and general results, valid for all classes 
of circuits, are known yet. 

Most fault modeling approaches rely on high-level 
fault models for behavioral HDL descriptions which 
have been developed by the current practice of software 
testing [Beiz90] and extending them to cope with hard-
ware descriptions. In this sense, a high-level fault model 
corresponds to a metric that measures the goodness of a 
given sequence of input vectors. 

The fault model chosen in this paper is an instantia-
tion of the observability enhanced statement coverage 
metric proposed in [DGKe96] and [FDKe98]. This fault 
model requires all statements in the VHDL description 
to be executed at least once, and their effects propa-
gated to at least one primary output. Propagation is 
modeled implicitly, by determining whether the faulty 
statement may influence the output values but without 
hypothesizing any specific faulty value: in some cases, 
heuristics are needed to resolve non-determinism, and 
the meaningfulness of the resulting fault coverage is 
affected by these approximations. While this approach 
can be fruitfully exploited for test pattern generation 
[FADe99] [CSSq00b], for fault simulation we need 
more accurate results. 

In this paper we thus adopt a particular instantiation 
of the observability enhanced statement coverage met-
ric, and in particular we model single stuck-at bit faults 
on all assignment targets of the executed statements. 
With this choice, a concrete faulty behavior is simu-
lated, and fault propagation can therefore be performed 
exactly, by computing the faulty machine evolution. 
This fault model implies observability enhanced state-



ment coverage, since it models one of the possible fault 
classes on executed statements. 

The most important technical barrier is the lack of 
efficient fault simulators, once a fault model is chosen. 
Fault simulation algorithms for RT-level designs are 
known since more than a decade, even if they mainly 
target structural-style descriptions rather than behav-
ioral-style ones, but commercial tools usually don’t 
include these capabilities. Classical algorithms are diffi-
cult to integrate in HDL simulators, mainly due to the 
complexity and to the several peculiarities of HDL 
languages. Until some fault model becomes widely 
accepted, this situation is not likely to change, because 
CAD vendor have no good reason to invest yet. 

The main goal of this paper is to present an approach 
that allows fault simulation at the RT-level of VHDL 
descriptions, by interacting with a standard commercial 
VHDL simulator. The approach is based on exploiting 
debugging mechanisms inherent with the chosen VHDL 
simulator and exposed through the scripting language 
interface, such as breakpoints, script and TCL pro-
gramming, and signal traces, and allows an accurate and 
fast simulation of faulty behaviors through a minimally 
invasive procedure. Other approaches were formerly 
proposed in [RiUc96], where for each fault a newly 
modified VHDL description was built, compiled, and 
simulated, and in [FiFu00], where a single modified 
VHDL model foresaw all the possible single and multi-
ple fault locations and values. In our approach, VHDL 
descriptions are never modified, so that simulation 
always proceeds at full speed for all the circuit except 
the fault insertion point, and more complex VHDL 
constructs can be accepted at little implementation cost. 

Section 2 of this paper gives a more formal defini-
tion of the selected fault model, Section 3 describes the 
algorithm and the implementation of the proposed fault 
simulation tool. Some experimental results showing the 
feasibility of the approach are then presented in Section 
4, and Section 5 finally concludes the paper. 

2. Fault Model 
Fault models taken from software-testing [Beiz90] 

have three main advantages: they are well known and 
quite standardized; they require little calculations, apart 
from the complete simulation of the fault-free system; 
and they are already embedded in some commercial 
tools. However, while such metrics may be useful to 
validate the correctness of a design [CSSq00], they are 
usually inadequate to foresee the gate-level fault cover-
age with high degree of accuracy. 

To improve accuracy, some researchers extended 
software metrics to cope with the peculiarities of hard-
ware descriptions.  Fallah et al. [FADe99] [FDKe98] 

proposed Observability-Enhanced Statement Coverage. 
They define the concept of tag as the possibility that an 
incorrect value is computed at a given location. Differ-
ent tags are first injected in any possible location and 
then propagated during the simulation. The observabil-
ity-enhanced statement coverage metric computes the 
number of tags that reach an observable circuit output 
when the test pattern is applied. 

In this paper we adopt observability-enhanced state-
ment coverage and we refine it by using explicit RT-
Level single-bit stuck-at’s instead of tags. An RT-level 
single-bit stuck-at fault is defined as a single-bit stuck-
at in the effect of an RT-level assignment operation: 
when a fault is present, the affected object (signal or 
variable target of an assignment statement) loads the 
correct value, except for one bit that remains stuck to 0 
or 1. 

As in [DGKe96], faults are single and permanent: 
only one fault is inserted at a time and the fault effect is 
present during the whole simulation. The RT-Level 
single-bit stuck-at fault model does not explicitly con-
sider control-flow faults, such as stuck-at-true or stuck-
at-false, as [RiUc96] does. 

In more details: 
• For bit signals or variables, the fault forces the 

value of 0 or 1 regardless the actual value. No 
other values (e.g., ‘Z’) are considered. 

• In bit vector signals or variables, each single ele-
ment is considered separately as a bit. 

• Integer signals or variables are translated into the 
equivalent bit vectors according to synthesis con-
ventions. Range checks are neglected in the result-
ing vector. 

• Enumerated signals or variables are translated into 
integers and bounds are ignored. If a fault forces 
an enumerated object to an illegal value causing 
the simulator to stop, it is marked as detected. 

• Faults on input ports are taken into account by 
considering the operation of setting an external 
value to a primary input as an implicit assignment 
operation. 

• Concurrent expressions are translated into their 
equivalent processes. 

• VHDL hierarchy is flattened, thus a process in-
stantiated more than once is seen as multiple proc-
esses. 

3. Fault Simulation Environment 

3.1.General architecture 
In order to verify the feasibility of the proposed fault 

simulation technique, we developed a prototype imple-
mentation of a Fault Simulator that, starting from a 



VHDL description at the RT-level, a Fault List of sin-
gle-bit stuck-at faults and a Test Pattern, creates a list of 
detected and undetected faults. 

To perform Fault Simulation we use a serial fault 
simulation strategy, and we simulate the good and each 
faulty machine, comparing their outputs. To run the 
simulations, the Test Pattern is first transformed to a set 
of commands that force the correct waveform for input 
signals, and the Fault List is transformed to a set of 
script commands for injecting faults during simulation. 

 Starting from the above considerations we devel-
oped Fault Detector System composed of the following 
elements: 
• Fault List Generator: tool that extracts informa-

tion (signal/variable names, hierarchy, type and 
source code line) from the analysis of VHDL 
Source code and creates the Fault List based on 
the proposed fault model. 

• Fault Simulator: tool composed of a set of rou-
tines interacting with the VHDL simulator. It 
simulates the circuit described by the VHDL 
Source using the Test Pattern and injects the faults 
present in the Fault List, creating a list of Detected 
Faults. 

3.2.The fault list 
As a preliminary step, for each design we extract a 

complete list of faults, by analyzing the VHDL source 
code and enumerating faults on input signals and on 
internal signals and variables. We analyze the code with 
the help of the LEDA VHDL*Verilog System database 
and of ModelSim EE 5.1g  scripts, and we obtain input 
signal names and types and assignment instructions 
with their VHDL source lines. By parsing assignment 
instructions we determine the signal or variable name 
and type. For hierarchical descriptions, the above analy-
sis is preceded by flattening of the hierarchy, where 
multiply instantiated processes are considered different. 

Information obtained by the VHDL source code 
analysis is collected in the Fault List. For each bit of 
each signal and variable we generate two Fault List 
entries, for the stuck-at ‘1’ and stuck-at ‘0’ faults, con-
taining the above information. Each fault is described 
by a tuple composed of: VHDL source file name, 
source line (not relevant for input faults), the target type 
(input, signal or variable), target hierarchical name, bit 
position, stuck-at value and some fault detection infor-
mation. After simulation, each entry is updated with the 
indication of fault status (detected or undetected) and 
the number of the pattern detected it. 

3.3.The Fault Simulator 
The Fault Simulator is the core of the Fault Detector 

Architecture. This part of the tool injects faults accord-
ing to a serial fault simulation methodology: for each 
fault, the entire test pattern is simulated, and outputs are 
compared. Several optimization can be implemented 
over this basic scheme, and will be the subject of further 
work, while the current implementation already proves 
the feasibility of the approach. A pseudo code descrip-
tion of the Fault Simulator is reported in Figure 1. 

 
ReadFaultList(); 
ReadTestPatterns(); 
InitializeSimulator(); 
/* simulate the good machine */ 
Simulate(good); 
StoreOutputs(good); 
for(each fault) 
{ 
  /* simulate the faulty machine */ 
  InjectFault(fault); 
  Simulate(fault); 
  if (CompareOutputs(good, fault) == DIFFER) 
    UpdateFaultList(fault, DETECTED); 
  else 
    UpdateFaultList(fault, UNDETECTED); 
} 

Figure 1: Fault Simulator Algorithm 

3.4.Fault Injection Strategy 
The core of the Fault Simulator is the Fault Injection 

procedure. Several different approaches for injection of 
permanent faults in VHDL descriptions are possible, 
some of which have already been proposed in the litera-
ture: 
• Changing the VHDL code: original VHDL in-

structions are enriched by the code necessary to 
inject the fault and new input signals are added to 
control fault injection [FiFu00]. This technique 
significantly slows down simulation, because the 
additional source lines are always simulated, also 
when they are not used to inject the fault.  

• Modifying the simulator: the code necessary to 
inject and detect faults is added into simulator 
source code. This technique is probably the fastest 
fault injection methodology, and promises to 
simulate each faulty machine as fast as the fault 
free circuit, and is extremely powerful, because 
one may change any parameter or register during 
simulation. The problem of this technique is the 
availability of the source code of a good simula-
tor. 



• Interacting with the simulator: faults are in-
jected through the simulator user interface using 
simulation commands. This technique is less pow-
erful than modifying the simulator, but during 
simulation it is nearly as fast. In fact, no additional 
source code is present and commands are active 
only when the fault is injected. 

Our fault injection system belongs to the third meth-
odology. Fault injection is made possible by creating 
routines that change the target signal/variable bit value 
during simulation, using the simulator scripting lan-
guage (TCL), when a given target assignment instruc-
tion is executed. 

The chosen fault injection methodology must face 
various issues derived from the fault model, from 
VHDL Semantics and from the simulator itself. 

The chosen fault model considers both input signals 
and internal signals or variables: while the fault model 
definition treats them uniformly, form the implementa-
tion point of view they are different. The former ones, 
subject of no assignment instruction, do not correspond 
to a source code line identifiable as target during the 
simulation, while the latter may be written several times 
in the VHDL description, thus preventing a statically 
“forced” assignment of the faulty bit. Two different 
fault injection methods must therefore be used: one for 
input signals and one for internal signals or variables. 
Input signals can be modified before simulation starts, 
but internal variables and signals must be changed dur-
ing simulation, whenever the target assignment instruc-
tion is executed. 

VHDL semantics specify that signals change at wait 
statements and variables change immediately. Conse-
quently internal signals and variables must be treated in 
different ways during fault injection. Variables can be 
changed immediately after the execution of an assign-
ment instruction; signals instead may be changed only 
just before the execution of the wait statement (or of the 
last line of the process, if the wait statement is implicit).  

The simulator limits interaction to the commands 
exposed through the scripting user interface. All the 
commands necessary to inject the fault must therefore 
respect the syntax and the timing of the simulator. Spe-
cifically, the ModelSim simulator accepts simulation 
commands and TCL routines. In our case, fault injec-
tion is performed through insertion of appropriate 
breakpoints at target instructions. 

Due to the above restrictions, we use two different 
approaches to inject faults: pre-simulation fault injec-
tion for input signal faults and run-time fault injection 
for internal faults. Fortunately, no distinction needs to 
be made concerning the data type of the involved sig-
nals and variables, since the simulator interface allows 

us to treat all object as bit vectors, regardless of their 
original type (bit, bit vector, integer, enumerated, …). 

Pre-simulation fault injection consists of changing 
the target bit value of an input signal before simulation 
starts (during the waveform definition phase) forcing it 
at the stuck-at value. Pre-simulation fault injection is 
fast as a normal simulation because no delay is added to 
inject faults. 

Run-time fault injection consists of changing the tar-
get bit value of the assignment instruction selected 
during the simulation. Breakpoints are used in this case: 
before simulation starts, a breakpoint is set on the 
VHDL source line where fault is located. The Fault List 
file contains all the information necessary to injected 
the fault. Embedded in the breakpoint instruction there 
are two different routines depending on the type (vari-
able or signal) of the assignment instruction target. 

If the target is a variable, the instruction is executed, 
then the given bit of the variable is changed and simula-
tion is continued. 

If the target is a signal a more sophisticated double-
breakpoint technique is needed, to avoid modifying the 
signal values in advance with respect to VHDL signal 
propagation semantics. In the double-breakpoint tech-
nique, a breakpoint is set at the source code line where 
the wait statement or the last instruction is placed and 
simulation continues without modifying anything. This 
new breakpoint, that will be activated only when the 
wait statement (explicit or implicit) is about to be exe-
cuted, forces the given bit of the signal to the stuck-at 
value and unsets itself before continuing the simulation. 

Run-time fault injection using the breakpoint tech-
nique slows down simulation by a really negligible 
amount. In fact, breakpoints are optimized by the simu-
lator and impact on the simulation only when the target 
statements are executed, and the fault is injected. 

 

4. Experimental results 
Starting from the proposed fault model and consider-

ing all the constraints described above, we implemented 
two programs, the Fault List Generator and the Fault 
Simulator. The implementation consists of about 300 
lines of C code for VHDL code analysis and Fault List 
creation, linked to the LEDA LPI interface and interact-
ing with the ModelSim simulator, and of 700 lines of C 
code for the Fault Simulator, that is interfaced to the 
ModelSim simulator through Unix pipes. 

To show the feasibility of the Fault Simulation ap-
proach, we selected a subset of the ITC’99 VHDL 
benchmarks [D&T2000], whose characteristics are 
summarized in Tab. 1. The first columns report some 
data about the RT-level descriptions, in terms of VHDL 



lines, VHDL processes (with hierarchy unflattened), 
and overall number of extracted basic blocks. To have a 
better idea about circuit size, we synthesized the circuits 
with the Synopsys Design Compiler; data about the 
resulting gate-level descriptions are reported in the last 
columns, in terms of number of Primary Inputs, Primary 
Outputs, Flip-Flops, combinational gates, and uncol-
lapsed and collapsed stuck-at faults.  

We extracted the fault lists for the chosen subset of 
benchmarks, and fault simulated them with a sample of 
pseudo-random input sequences. In the experiments we 
performed, the Test Pattern consisted of 500 pseudo-
random vectors arranged as 5 independent sequences. A 
reset sequence was applied between each couple of 
adjacent sequences. The results obtained by running the 
Fault Simulator on a Sun Ultra 5 running at 333 MHz 
with 256MB or memory are reported in Tab. 2. For 
each circuit we report the percentage of tested targets on 
the RT-level description and the CPU Time required by 
the Fault Simulator, including CPU time spent by the 
VHDL simulator. 

The experiments show the feasibility of the proposed 
fault simulation methodology: without modifying the 
VHDL code nor the VHDL simulator, we are able to 
compute the effects of faults on assignment instructions. 

Even with this simple random test bench, the simula-
tor already shows different fault coverage figures, al-
lowing us to foresee the random pattern testability in the 
initial phases of the design. For instance, we can argue 
that the b06 circuit is random pattern resistant, and also 
b03 and b09 are difficult to test. Due to the currently 
implemented serial fault simulation approach, CPU 
times are nearly equal to the time needed to simulate the 
test pattern on the fault free circuit, times the number of 
faults in the fault list. 

Although the fault injection procedures based on 
breakpoints are an efficient solution, the current version 
of the rest of the algorithm is still at a prototypical 
stage, and currently implements a straightforward serial 
fault simulation algorithm. In order to reduce the re-
quired CPU time, several optimizations can be imple-
mented by building upon the simulator scripting 
mechanisms. Some optimization techniques that will be 
explored in the near future are fault collapsing and 
untestable faults identification, early output comparison 
for halting simulation at the first difference, late simula-
tion start to skip in the simulation of faulty machine the 
initial subset of vectors that does not excite the fault, 
and so on.  

5.Conclusions 
This paper presented an approach to fault simulation 

of RT-level description based on exploiting the existing 

debug mechanisms of commercial VHDL simulators. 
With a relatively moderate effort, an effective fault 
simulator can be built by properly programming a 
VHDL simulator, with a negligible overhead on simula-
tion time. The implemented fault simulation system is 
able to simulate a refined version of the widely used 
observability-enhanced statement coverage metric, 
where observability is explicitly taken into account in 
an exact manner. 

Experimental results prove the feasibility of the ap-
proach, and show that access to the source code of a 
VHDL simulator or modifications of the VHDL code 
are not required in order to compute faulty responses 
from a digital circuit. The efficiency of VHDL simula-
tion cores and the versatility of their user interfaces 
open up the possibility of greatly optimizing the effi-
ciency of the proposed approach. 
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VHDL GATE 
Circuit Lines Proc BB PI PO FF GATES Total 

Faults 
Collapsed 

Faults 
b01 110 1 28 2 2 5 46 258 127 
b02 70 1 17 1 1 4 28 150 64 
b03 141 1 27 4 4 30 149 822 382 
b04 102 1 23 11 8 66 597 3,356 1,477 
b06 128 1 25 2 6 9 60 302 151 
b07 92 1 21 1 8 49 420 2,404 1,120 
b08 89 1 14 9 4 21 167 918 439 
b09 103 1 16 1 1 28 159 900 417 

Table 1: Benchmark characteristics 

Fault Simulation Circuit 
Detected 

Faults 
Total Faults Coverage [%] CPU Time 

b01 112 132 84.85 474.24 
b02 61 76 80.26 311.74 
b03 119 236 50.42 1,215.91 
b04 310 412 75.24 3,611.79 
b06 48 198 24.24 288.54 
b07 218 298 75.24 940.45 
b08 98 130 75.38 705.05 
b09 138 286 48.25 1,471.57 

Table 2: Fault simulation results 

  

 


