
Evolutionary Test Program Induction for Microprocessor Design Verification

Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda, Giovanni Squillero

Politecnico di Torino
Dipartimento di Automatica e Informatica

http://www.cad.polito.it/

Abstract*

Design verification is a crucial step in the design of
any electronic device. Particularly when microproces-
sor cores are considered, devising appropriate test
cases may be a difficult task. This paper presents a
methodology able to automatically induce a test pro-
gram for maximizing a given verification metric. The
methodology is based on an evolutionary paradigm and
exploits a syntactical description of microprocessor
assembly language and an RT-level functional model.
Experimental results show the effectiveness of the ap-
proach.

1. Introduction

Design verification is an essential activity in the de-
sign of any electronic device. Concerning microproces-
sors, it has been maintained that about a third of the cost
of developing a new product is devoted to hardware
debugging and testing [1]. Reviewing all design verifi-
cation aspects would deserve a very long discussion, but
it is possible to distinguish between two classes of ap-
proaches: formal and simulation-based. Formal meth-
ods try to verify the correctness of a system by using
mathematical proofs, whereas simulation-based design
verification tries to uncover design errors by detecting a
circuit faulty behavior when deterministic or pseudo-
random tests are applied. Formal methods implicitly
consider all possible behaviors of the models represent-
ing the system and its specification, and the accuracy
and completeness of the system and specification mod-
els, as well as required computation resources, are a
fundamental limitation. On the contrary simulation-
based methods do not suffer from the same constraints,
but can only consider a limited range of behaviors and
will never achieve 100% confidence of correctness.

* This work has been partially supported by Center of Excellence on

Multimedia Radio communications (CERCOM) of Politecnico di
Torino and by Agenzia Spaziale Italiana.

Microprocessor and microcontroller complexity usu-
ally prevents the straightforward usage of formal or
semi-formal techniques [2] or equivalence checking
[3]. Exact approaches have been successfully exploited
on specific portions or on simplified high-level models,
but they are hardly applicable to complete RT-level
descriptions. In addition, the verification process nor-
mally requires a deep knowledge of the processor archi-
tecture. Common pseudo-random strategies cannot be
easily exploited since only correct programs can inter-
nally perform meaningful operations. As a consequence,
manufacturers commonly rely on simulation-based
methods where test cases are meticulously written by
hand.

However, hand-written test cases can be only ex-
ploited as a first line of defense against bugs, since they
focus on basic functionalities and important but rarely-
occurring corner cases. During the whole design proc-
ess, exhaustive or nearly-exhaustive tests are often
necessary, but the effort required to manually generate
them may be practically unworkable.

Today, advances in simulation and emulation tech-
nology enabled the use of other sources of test stimuli
such as existing application and system software [1].
Additionally, to increase test productivity sophisticated
test-generation systems have been proposed [4] [5].
Nevertheless, although all these approaches can signifi-
cantly increase design productivity, they are still biased
towards corner cases, far from being fully automated
and not broadly exploitable.

This paper presents a new methodology for generat-
ing a test case for validating a microprocessor, where
the test case is an assembly program able to maximize a
predefined verification metric. Design verification of
on-chip peripherals, such as timers or counters is not
considered here.

The proposed approach exploits an evolutionary
paradigm called genetic programming (GP) for generat-
ing the test program. The algorithm relies on a syntacti-
cal description of the assembly language implemented
by the processor and is able to induce test cases for
efficiently maximizing the verification metric without
human intervention. At the end of the process, the test

program can be simulated and allows designers to iden-
tify those parts of the description that the tool failed to
validate, and therefore possibly require a more detailed
analysis.

Evolutionary algorithms have been already succes-
fully exploited both for validation [6] and test [7]. They
demonstrated the ability to tackle large designs with few
limitations. Both [6] and [7] exploited genetic algo-
rithms (GAs) to cultivate sequences of input vectors
(i.e., variable-length bit strings). The proposed approach
aims at generating syntactically correct test programs,
and GAs are not exploitable.

The proposed approach was tested on the i8051 mi-
crocontroller using statement coverage as a verification
metric. The i8051, despite its relatively old age, is still
one of the most popular microprocessors and can be
considered a good example of a small microcontroller.
However, the methodology is applicable to more com-
plex designs, like pipelined microprocessors, and can
easily exploit different design verification metrics, such
as branch, conditional or path coverage.

Next Section introduces simulation-based design
verification, and illustrates the proposed evolutionary
approach. Section 3 details the case study, while Section
4 shows experimental results. Section 5 concludes the
paper.

2. Simulation-Based Design Verification

Given an RT-level description of a microprocessor,
simulation-based verification requires a test program
and a tool able to simulate its execution. The goal is to
uncover all design errors, and the effectiveness of the
test program is usually evaluated with regards to some
metric.

test case
generator

test
programinstruction

library

RT-level
design

simulator
COV%

test case
generator

test
programinstruction

library

RT-level
design

simulator
COV%

Figure 1: System Architecture

As reminded before, the verification metric exploited
in this paper is the statement coverage. To avoid any
confusion, in the following the term instruction will
denote an instruction in an assembly program, while the
term statement will refer to a statement in an RT-level
description. The verification metric exploited in this
paper measures the percentage of executed RT-level
statements over the total.

While statement coverage is one of the simplest met-
rics, it can be considered as a required starting point for
any design verification process. Statement coverage
analysis ensures that no part of the design missed func-
tional test during simulation, as well as reducing simu-
lation effort from “over-verification” or redundant test-
ing. Moreover, use of coverage analysis provides an
easy and objective way of measuring simulation effec-
tiveness to ensure that all bugs would be exposed with
the minimum amount of effort. Indeed, most CAD ven-
dors have recently added code-coverage features to their
simulators.

Designers are used to write their own test programs
to check the basic functionalities and critical corner
cases. Devising test cases is a difficult, time-consuming
task. In addition, while writing a test program requires a
deep knowledge on the microprocessor architecture, the
designer is not the ideal verification engineer since he
can be biased by his expectation, failing to check for
some errors. Hand-written test cases are definitely re-
quired, but are not sufficient in the verification process.

The simplest method to obtain an assembly test pro-
gram is probably to compile a high-level routine. This
approach relies on a compiler or cross-compiler, but this
requirement may be easily met. Despite their effortless-
ness, compiled problem-specific algorithms are not the
best solution. They are severely inadequate to uncover
design errors: due to the intrinsic nature of the algo-
rithms or of compiler strategies, they are seldom able to
execute all statements in a description testing all func-
tionalities.

A better strategy is to generate random assembly
programs. This approach is likely to cover more state-
ments in the description, but is less straightforward. A
random generated program may easily contain illegal
operations, such as division by zero, or endless loops.
However, the effort required to generate a syntactically
correct assembly source is still moderate. The main
drawback of this method is that a random program will
hardly cover all corner cases, hence resulting in low
statement coverage. In order to obtain a sufficient cov-
erage a large number of long programs are needed,
resulting in overlong simulation times.

This paper presents a new approach for devising a
test program, based on an evolutionary algorithm. The
induction of the test case is fully automated and only
requires a syntactical description of the assembly im-
plemented by the microprocessor. The resulting pro-
gram is reasonably short and maximizes the target veri-
fication metric.

The overall architecture is shown in Figure 1. The
microprocessor assembly language is described in an
instruction library, and the test case generator gener-

ates efficient test programs exploiting it. The execution
of each assembly program is simulated with an external
tool, and the corresponding statement coverage is used
to drive the optimization process.

Next sections better detail the approach.

2.1. Genetic Programming for Test Program
Genetic Programming (GP) was defined as a do-

main-independent problem-solving approach in which
computer programs are evolved to solve, or approxi-
mately solve, problems [8]. GP addresses one of the
more desired goals of computer science: creating, in an
automated way, computer programs able to solve prob-
lems.

Traditional GP induced programs are mathematical
functions that, after being evaluated, yield a specific
result. The pioneering ideas of generating real (Turing
complete) programs date back to [9]. More recently [10]
[11] suggested to directly evolve programs in machine-
code form for completely removing the inefficiency in
interpreting trees. A genome compiler has been pro-
posed in [12], which transforms standard GP trees into
machine code before evaluation.

This paper exploits a versatile GP-like approach for
inducing assembly programs presented in [13]. The
methodology exploits a directed acyclic graph (DAG)
for representing the flow of the program (Figure 2). The
DAG is built with four kinds of nodes: prologue (fol-
lowed by 1 child), epilogue (followed by no children),
sequential instruction (followed by 1 child), and branch
(followed by 2 children).

Figure 2: DAG Representation

• The prologue and epilogue nodes are always pre-
sent and represent required operations, such as ini-
tializations. They depend both on the processor and

on the operating environment, and they may be
empty. The prologue has no parent node, while the
epilogue has no children. These nodes may never be
removed from the program, nor changed.

• Sequential-instruction nodes represent common
operations, such as arithmetic or logic ones (e.g.,
node B). They are always followed by exactly one
child. The number of parameters changes from in-
struction to instruction, following assembly specifi-
cation. Unconditional branches are considered se-
quential, since execution flow does not split (e.g.,
node D).

• Conditional-branch nodes are translated to assem-
bly-level conditional-branch instructions (e.g., node
A). All common assembly languages implement
some jump-if-condition mechanisms. All conditional
branches implemented in the target assembly lan-
guages are included in the library.

ORL

ORL

POP

ORL

NOP

PARAMETERS
Code

Previous
Node

Next
Node

reg = R1
ORL A, reg

instruction
library

ORL

ORL

POP

ORL

NOP

PARAMETERS
Code

Previous
Node

Next
Node

reg = R1
ORL A, reg

instruction
library

Figure 3: Sequential Node

Each node contains a pointer inside the instruction
library and, when needed, its parameters (i.e., operand
values or register specifications). For instance, Figure 3
shows a sequential node that will be translated into a
“ORL A, R1” intruction, i.e., a bite-wise OR between
accumulator and register R1. The instruction library
may contain different entries corresponding to the same
instruction. For instance, the entry referring to
“ORL A, addr”, where the addr parameter is the data
RAM address, is different from the entry “ORL A, reg”
where the reg parameter is a register used either as a
direct or indirect specification.

The DAG is always translated to a syntactically cor-
rect, loop-less assembly program, although it is not
possible to infer its semantic meaning. An induced
program may perform operations on any register and
any memory locations, and this exceptional freedom is
essential to generate test programs.

The library approach developed in [13] enables to
exploit the genetic core and the DAG structure with
different microcontrollers or microprocessors that not

ADD
ADDC
AJMP
ANL
CJNE
CLR
CPL
DA
DEC
DIV
DJNZ
INC
JB
JBC
JC
JMP
JNB
JNC
JNZ
JZ
LJMP
MOV
MOVC
MOVX
MUL
NOP
ORL
POP
PUSH
RL
RLC
RR
RRC
SETB
SJMP
SUBB
…

Instructions Library

A

B

C

D

E

F

H

Prologue

Epilogue

ADD
ADDC
AJMP
ANL
CJNE
CLR
CPL
DA
DEC
DIV
DJNZ
INC
JB
JBC
JC
JMP
JNB
JNC
JNZ
JZ
LJMP
MOV
MOVC
MOVX
MUL
NOP
ORL
POP
PUSH
RL
RLC
RR
RRC
SETB
SJMP
SUBB
…

Instructions Library

A

B

C

D

E

F

H

Prologue

Epilogue

only implement different instruction sets, but also use
different formalisms and conventions. Indeed, the
method has been already successfully tested with a
DLX, an academic microprocessor implementing a 5-
stage pipeline [14] and a SPARC [15].

Adopted DAG representation prevents backward
branches, either conditional or unconditional. This char-
acteristic guarantees program termination, since no
endless loop may be implemented, but introduces a
small reduction in semantic power.

2.2. Test Program Induction
Test programs are induced by mutating the DAG to-

pology and by mutating parameters inside DAG nodes.
Both kinds of modifications are embedded in an evolu-
tionary algorithm implementing a (µ+λ) strategy.

In more details, a population of µ individuals is cul-
tivated, each individual representing a test program. In
each step, λ new individuals are generated by mutating
existing ones, parents are selected using tournament
selection with tournament size τ. After creating new λ
individuals, the best µ programs in the population of
(µ+λ) are selected for surviving. The initial population
is generated creating µ empty programs (only prologue
and epilogue) and then applying im consecutive random
mutations to each.

Three mutation operators are implemented and are
chosen with equal probability:
• Add node: a new node is inserted into the DAG.

The new node can be either a sequential instruction
or a conditional branch. In both cases, the instruc-
tion referred by the node is randomly chosen. If the
inserted node is a branch, either unconditional or
conditional, one of the subsequent nodes is ran-
domly chosen as the destination. Remarkably, when
an unconditional branch is inserted, some nodes in
the DAG may become unreachable (e.g., node E in
Figure 2).

• Remove node: an existing internal node (except
prologue or epilogue) is removed from the DAG. If
the removed node was the target of one or more
branch, parents’ edges are updated.

• Modify node: all parameters of an existing internal
node are randomly changed. Parameters include
immediate values and register specifications.
The evolution process iterates until population

reaches a steady state condition, i.e., no improvements
are recorded for Sg generations.

2.3. Test Program Evaluation
Individuals are evaluated by simulation. The DAG is

first translated into a syntactically correct assembly

program and assembled to machine code. Then the
execution of the test case is simulated on the RT-level
description of microcontroller, gathering verification
metric figures. The final value is considered as the fit-
ness value of the individual, i.e., the extent to which it is
able to produce offspring in the environment.

Fitness values are used to select λ parents for gener-
ating new offspring through a tournament of size τ (i.e.,
τ individuals are randomly selected and the fittest one is
picked). Moreover, fitness values are used to determin-
istically select the best µ individuals out of the (µ+λ)
ones at the end of each evolution step.

Test program evaluation does not consider the inter-
nal structure of the microprocessor, nor it includes hints
for increasing the coverage based on designers’ knowl-
edge.

3. Case Study: the i8051 Microcontroller

The proposed approach was tested on the i8051 mi-
crocontroller using the statement coverage as a verifica-
tion metric.

Despite its relatively old age, the i8051 is one of the
most popular microcontrollers in use today, and many
derivative microcontrollers are based on it. The i8051 is
an 8-bit microprocessor originally designed in the 80’s
by Intel that has gained great popularity since its intro-
duction. Its standard form includes several on-chip
peripherals, including timers, counters, and UART’s,
plus 4 Kbytes of on-chip program memory and 128
bytes of data memory, making single-chip implementa-
tions possible.

The i8051 memory architecture includes 128 bytes
of data memory that are accessible directly by its in-
structions. A 32-byte segment of this 128-byte memory
block is bit addressable by a subset of the i8051 instruc-
tions, namely the bit-instructions. External data memory
of up to 64 Kbytes is accessible by a special “MOVX”
instruction. Up to 4 Kbytes of program instructions can
be stored in the internal memory of the i8051, or the
i8051 can be configured to use up to 64 Kbytes of ex-
ternal program memory. The majority of the i8051’s
instructions are executed within 12 clock cycles.

3.1. Instruction Library
The i8051 instructions range from 0-operand ones,

like “DIV AB” (divide accumulator A by B) where all
operands are implicit, to 3-operand ones, like the
“CJNE Op1, Op2, RelAddr” (compare Op1 with Op2
and jump if they are not equal). The i8051 allows 5
different addressing types: immediate, direct, indirect,
external direct and code indirect. As in many CISC,

registers are not orthogonal to the instructions and ad-
dressing modes.

The instruction library for the i8051 consists in 81
entries. Prologue, epilogue, 66 sequential operations
and 13 conditional branches. All instructions related to
subroutine call and interrupt call were not considered
for the work described here, and the corresponding
blocks in the description were not considered during
statement coverage calculation.

4. Experimental Results

A prototype of the proposed approach has been de-
veloped in ANSI C language in about 1,600 lines of
code. The prototype exploits Modelsim v5.5a by Model
Technology for simulating the design and getting cover-
age figures.

The methodology was tested on a synthesizable RT-
level implementation of the i8051 core consisting in
about 7,500 VHDL lines (the corresponding gate-level
netlist is about 12K gates). An external data RAM of 2
Kbytes was connected to the i8051, while no external
program memory was used.

NAME MODULE LINES STMS
CTR Processor core 5,206 2,121
ALU Arithmetic Logic Unit 429 226
DEC Decoder 270 220
XRM External SRAM interface 77 11

Table 1: i8051 RT-level description

Four main blocks can be found in the RT-level de-
scription (Table 1): the processor core control logic
(CTR), the arithmetic and logic unit (ALU), the instruc-
tion decoder (DEC), and the external SRAM interface
(XRM). The CTR is described behaviorally as a sequen-
tial logic block; the ALU is described behaviorally as a
combinational logic block; the DEC is described as a
data-flow implementing a combinational logic block;
the XRM models an external SRAM. For each block
Table 1 reports the total number of VHDL lines
[LINES] and the number of statements [STMS].

Inducing a test program with the proposed GP re-
quired about 10,000 generations, corresponding to the
evaluation of about 100,000 programs. The experiments
employed about 12 hours of CPU time on a SPARC
ULTRA Workstation at 400MHz with 2GB of RAM.
Table 2 shows the parameters adopted.

To assess the efficiency of the proposed method, the
induced test program was compared with 5 programs
devised with 3 different methodologies: compiled prob-
lem-specific algorithms; random test programs; and

exhaustive functional test case. Table 3 compares the
different programs in term of required program ROM
bytes [SIZE] and instructions executed by the program
[INST]. Statement coverage figures are reported in
column [TOTAL]. Statistics are also detailed for the 4
blocks [ALU], [CTR], [DEC] and [XRM].

PAR MEANINGS VALUE
µ Population size 5
λ Offspring size 10
τ Tournament size (selective pressure) 2
im Initial mutations 100
Sg Steady state 500

Table 2: GP parameters

The two problem-specific algorithms are Fibonacci
and int2bin. The former calculates the Fibonacci series,
while the latter converts an integer to a binary represen-
tation. As expected, the coverage figure is quite low.
Looking at the decoder, it may be easily inferred that
only a subset of the instruction set is used. Both pro-
grams execute loops (the number of executed instruc-
tions is higher than the number of stored ones). Neither
program accesses the external data RAM.

Two different random test programs were consid-
ered. The former, Random (size = GP), was devised
using the same effort as the GP. 100,000 random pro-
grams of approximately 500 instructions were generated
and the best one was chosen. The comparison allows
evaluating the effectiveness of the evolutionary core in
driving the search process. The latter, Random (size =
4K), was devised generating 100,000 random programs
that filled almost all program ROM space and selecting
the best one. It is included here to allow an estimation
of the best result attainable with the random approach
disregarding efficiency.

Finally, TestAll, an exhaustive functional test pro-
gram, is considered. The test case was devised by the
microprocessor designer, it is relatively long and in-
cludes several loops. It tests all possible instructions,
although it is not able to check all possible corner cases
in the implementation. For instance, “DIV AB” when A
is less or equal than B was not taken into account.

The GP induced test program got the highest state-
ment coverage figure with the smallest size and the
lowest run time. Execution of the test case is fast, since
there are no loops by construction. Remarkably, there
are only 7 lines in the circuit description (1 in the ALU
and 6 in the CTR) that the GP is not able to cover.
These lines are executed when a conditional branch,
such as DJNZ or CJMP jumps to a location preceding
the current one, and these backward jumps cannot be
generated by the current DAG representation.

5. Conclusions

This paper presents a methodology able to automati-
cally induce an assembly test program for a microcon-
troller. The methodology is based on an evolutionary
paradigm, called genetic programming, and exploits the
syntactical description of the language. The generated
test case is able to efficiently maximize a given verifica-
tion metric.

A prototype of the proposed approach has been de-
veloped in ANSI C language; the method has been
evaluated on a synthesizable RT-level implementation
of the i8051 microprocessor using statement coverage
as verification metric. Induced test programs consis-
tently outperformed test cases devised with alternative
methodologies.

Experimental results show the efficiency of the
methodology. Devising a test case able to reach the
complete statement coverage is a difficult task, even on
a small microcontroller like the i8051. Reported data
show that random programs can hardly test all corner
cases and also long, carefully designed hand-made test
cases may not be exhaustive. The automatically induced
test program, conversely, was able to cover almost all
(99.7%) of the statements in the description.

Current work is targeted to apply the proposed ap-
proach to more complex processors and overcome the
semantic limitations introduced by the DAG constrain.
A current implementation already includes limited sub-
routine call and backward branch support, and its effec-
tiveness is presently being tested.

6. References

[1] J. Kumar, “Prototyping the M68060 for concurrent veri-
fication”, IEEE Design & Test, Vol. 14, No. 1, 1997, pp.
34–41

[2] M. Yoeli, Formal Verification of Hardware Design,
IEEE Computer Society Press, 1990.

[3] S.-Y. Huang, K.-T. Cheng, Formal Equivalence Check-
ing and Design Debugging, Kluwer, 1998

[4] A. K. Chandra et al., “AVPGEN - a test generator for
architecture verification”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 3, 1995,
pp. 188–200

 [5] A. Aharon et al. “Verification of the IBM RISC Sys-
tem/6000 by dynamic biased pseudo-random test pro-
gram generator”, IBM Systems Journal, 1991, pp. 527–
538

[6] F. Corno, A. Manzone, A. Pincetti, M. Sonza Reorda, G.
Squillero, “Automatic Test Bench Generation for Valida-
tion of RT-level Descriptions: an Industrial Experience,”
DATE2000: IEEE Design, Automation and Test in
Europe, 2000, pp. 385-389

[7] F. Corno, M. Sonza Reorda, G. Squillero, “High-Level
Observability for Effective High-Level ATPG,”
VTS2000: 18th IEEE VLSI Test Symposium, 2000,
pp. 411-416

[8] J. R. Koza, “Genetic programming”, Encyclopedia of
Computer Science and Technology, vol. 39, Marcel-
Dekker, 1998, pp. 29-43

[9] R. M. Friedberg, “A Learning Machine: Part (I)”, IBM
Journal of Research and Development, vol. 2, n. 1, 1958,
pp 2-13

[10] P. Nordin, “A compiling genetic programming system
that directly manipulates the machine code,” Advances in
Genetic Programming, 1994, pp. 311-331

[11] P. Nordin W. Banzhaf, “Evolving Turing-complete
programs for a register machine with self-modifying
code”, Genetic Algorithms: Proceedings of the 6th Inter-
national Conference, 1995, pp. 318-325

[12] A. Fukunaga, A. Stechert, D. Mutz, “A genome compiler
for high performance genetic programming”, Genetic
Programming 1998: Proceedings of the 3rd Annual Con-
ference, 1998, pp. 86-94

[13] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero,
“Efficient Machine-Code Test-Program Induction”,
CEC2002: Congress on Evolutionary Computation,
2002, pp. 1486-1491

[14] D. A. Patterson and J. L. Hennessy, Computer Architec-
ture - A Quantitative Approach, (second edition), Mor-
gan Kaufmann, 1996

[15] SPARC International, The SPARC Architecture Manual
(Version 8), Prentice Hall, 1992

SIZE INST ALU CTR DEC XRM TOTAL
Fibonacci 324 1,176 49.6% 30.2% 62.7% 81.8% 34.7%
int2bin 81 572 49.6% 21.3% 56.4% 81.8% 27.1%
Random (size = GP) 648 334 86.7% 87.6% 93.2% 100.0% 88.2%
Random (size = 4K) 4,044 2,356 96.5% 94.6% 97.7% 100.0% 95.0%
TestAll (exhaustive) 2,834 52,953 95.1% 99.4% 100.0% 100.0% 99.1%
GP Induced 469 228 99.6% 99.7% 100.0% 100.0% 99.7%

NAME PROGRAM STATEMENT COVERAGE

Table 3: Experimental Results

