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Abstract* 

Design verification is a crucial step in the design of 
any electronic device. Particularly when microproces-
sor cores are considered, devising appropriate test 
cases may be a difficult task. This paper presents a 
methodology able to automatically induce a test pro-
gram for maximizing a given verification metric. The 
methodology is based on an evolutionary paradigm and 
exploits a syntactical description of microprocessor 
assembly language and an RT-level functional model. 
Experimental results show the effectiveness of the ap-
proach. 

1. Introduction 

Design verification is an essential activity in the de-
sign of any electronic device. Concerning microproces-
sors, it has been maintained that about a third of the cost 
of developing a new product is devoted to hardware 
debugging and testing [1]. Reviewing all design verifi-
cation aspects would deserve a very long discussion, but 
it is possible to distinguish between two classes of ap-
proaches: formal and simulation-based. Formal meth-
ods try to verify the correctness of a system by using 
mathematical proofs, whereas simulation-based design 
verification tries to uncover design errors by detecting a 
circuit faulty behavior when deterministic or pseudo-
random tests are applied. Formal methods implicitly 
consider all possible behaviors of the models represent-
ing the system and its specification, and the accuracy 
and completeness of the system and specification mod-
els, as well as required computation resources, are a 
fundamental limitation. On the contrary simulation-
based methods do not suffer from the same constraints, 
but can only consider a limited range of behaviors and 
will never achieve 100% confidence of correctness.  
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Microprocessor and microcontroller complexity usu-
ally prevents the straightforward usage of formal or 
semi-formal techniques  [2] or equivalence checking 
[3]. Exact approaches have been successfully exploited 
on specific portions or on simplified high-level models, 
but they are hardly applicable to complete RT-level 
descriptions. In addition, the verification process nor-
mally requires a deep knowledge of the processor archi-
tecture. Common pseudo-random strategies cannot be 
easily exploited since only correct programs can inter-
nally perform meaningful operations. As a consequence, 
manufacturers commonly rely on simulation-based 
methods where test cases are meticulously written by 
hand. 

However, hand-written test cases can be only ex-
ploited as a first line of defense against bugs, since they 
focus on basic functionalities and important but rarely-
occurring corner cases. During the whole design proc-
ess, exhaustive or nearly-exhaustive tests are often 
necessary, but the effort required to manually generate 
them may be practically unworkable.  

Today, advances in simulation and emulation tech-
nology enabled the use of other sources of test stimuli 
such as existing application and system software [1]. 
Additionally, to increase test productivity sophisticated 
test-generation systems have been proposed [4] [5]. 
Nevertheless, although all these approaches can signifi-
cantly increase design productivity, they are still biased 
towards corner cases, far from being fully automated 
and not broadly exploitable. 

This paper presents a new methodology for generat-
ing a test case for validating a microprocessor, where 
the test case is an assembly program able to maximize a 
predefined verification metric. Design verification of 
on-chip peripherals, such as timers or counters is not 
considered here. 

The proposed approach exploits an evolutionary 
paradigm called genetic programming (GP) for generat-
ing the test program. The algorithm relies on a syntacti-
cal description of the assembly language implemented 
by the processor and is able to induce test cases for 
efficiently maximizing the verification metric without 
human intervention. At the end of the process, the test 



program can be simulated and allows designers to iden-
tify those parts of the description that the tool failed to 
validate, and therefore possibly require a more detailed 
analysis. 

Evolutionary algorithms have been already succes-
fully exploited both for validation [6] and test [7]. They 
demonstrated the ability to tackle large designs with few 
limitations. Both [6] and [7] exploited genetic algo-
rithms (GAs) to cultivate sequences of input vectors 
(i.e., variable-length bit strings). The proposed approach 
aims at generating syntactically correct test programs, 
and GAs are not exploitable. 

The proposed approach was tested on the i8051 mi-
crocontroller using statement coverage as a verification 
metric. The i8051, despite its relatively old age, is still 
one of the most popular microprocessors and can be 
considered a good example of a small microcontroller. 
However, the methodology is applicable to more com-
plex designs, like pipelined microprocessors, and can 
easily exploit different design verification metrics, such 
as branch, conditional or path coverage. 

Next Section introduces simulation-based design 
verification, and illustrates the proposed evolutionary 
approach. Section 3 details the case study, while Section 
4 shows experimental results. Section 5 concludes the 
paper. 

2. Simulation-Based Design Verification 

Given an RT-level description of a microprocessor, 
simulation-based verification requires a test program 
and a tool able to simulate its execution. The goal is to 
uncover all design errors, and the effectiveness of the 
test program is usually evaluated with regards to some 
metric.  
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Figure 1: System Architecture 

As reminded before, the verification metric exploited 
in this paper is the statement coverage. To avoid any 
confusion, in the following the term instruction will 
denote an instruction in an assembly program, while the 
term statement will refer to a statement in an RT-level 
description. The verification metric exploited in this 
paper measures the percentage of executed RT-level 
statements over the total. 

While statement coverage is one of the simplest met-
rics, it can be considered as a required starting point for 
any design verification process. Statement coverage 
analysis ensures that no part of the design missed func-
tional test during simulation, as well as reducing simu-
lation effort from “over-verification” or redundant test-
ing. Moreover, use of coverage analysis provides an 
easy and objective way of measuring simulation effec-
tiveness to ensure that all bugs would be exposed with 
the minimum amount of effort. Indeed, most CAD ven-
dors have recently added code-coverage features to their 
simulators. 

Designers are used to write their own test programs 
to check the basic functionalities and critical corner 
cases. Devising test cases is a difficult, time-consuming 
task. In addition, while writing a test program requires a 
deep knowledge on the microprocessor architecture, the 
designer is not the ideal verification engineer since he 
can be biased by his expectation, failing to check for 
some errors. Hand-written test cases are definitely re-
quired, but are not sufficient in the verification process. 

The simplest method to obtain an assembly test pro-
gram is probably to compile a high-level routine. This 
approach relies on a compiler or cross-compiler, but this 
requirement may be easily met. Despite their effortless-
ness, compiled problem-specific algorithms are not the 
best solution. They are severely inadequate to uncover 
design errors: due to the intrinsic nature of the algo-
rithms or of compiler strategies, they are seldom able to 
execute all statements in a description testing all func-
tionalities. 

A better strategy is to generate random assembly 
programs. This approach is likely to cover more state-
ments in the description, but is less straightforward. A 
random generated program may easily contain illegal 
operations, such as division by zero, or endless loops. 
However, the effort required to generate a syntactically 
correct assembly source is still moderate. The main 
drawback of this method is that a random program will 
hardly cover all corner cases, hence resulting in low 
statement coverage. In order to obtain a sufficient cov-
erage a large number of long programs are needed, 
resulting in overlong simulation times. 

This paper presents a new approach for devising a 
test program, based on an evolutionary algorithm. The 
induction of the test case is fully automated and only 
requires a syntactical description of the assembly im-
plemented by the microprocessor. The resulting pro-
gram is reasonably short and maximizes the target veri-
fication metric. 

The overall architecture is shown in Figure 1. The 
microprocessor assembly language is described in an 
instruction library, and the test case generator gener-



ates efficient test programs exploiting it. The execution 
of each assembly program is simulated with an external 
tool, and the corresponding statement coverage is used 
to drive the optimization process. 

Next sections better detail the approach.  

2.1. Genetic Programming for Test Program  
Genetic Programming (GP) was defined as a do-

main-independent problem-solving approach in which 
computer programs are evolved to solve, or approxi-
mately solve, problems [8]. GP addresses one of the 
more desired goals of computer science: creating, in an 
automated way, computer programs able to solve prob-
lems.  

Traditional GP induced programs are mathematical 
functions that, after being evaluated, yield a specific 
result. The pioneering ideas of generating real (Turing 
complete) programs date back to [9]. More recently [10] 
[11] suggested to directly evolve programs in machine-
code form for completely removing the inefficiency in 
interpreting trees. A genome compiler has been pro-
posed in [12], which transforms standard GP trees into 
machine code before evaluation. 

This paper exploits a versatile GP-like approach for 
inducing assembly programs presented in [13]. The 
methodology exploits a directed acyclic graph (DAG) 
for representing the flow of the program (Figure 2). The 
DAG is built with four kinds of nodes: prologue (fol-
lowed by 1 child), epilogue (followed by no children), 
sequential instruction (followed by 1 child), and branch 
(followed by 2 children). 

 

Figure 2: DAG Representation  

• The prologue and epilogue nodes are always pre-
sent and represent required operations, such as ini-
tializations. They depend both on the processor and 

on the operating environment, and they may be 
empty. The prologue has no parent node, while the 
epilogue has no children. These nodes may never be 
removed from the program, nor changed. 

• Sequential-instruction nodes represent common 
operations, such as arithmetic or logic ones (e.g., 
node B). They are always followed by exactly one 
child. The number of parameters changes from in-
struction to instruction, following assembly specifi-
cation. Unconditional branches are considered se-
quential, since execution flow does not split (e.g., 
node D). 

• Conditional-branch nodes are translated to assem-
bly-level conditional-branch instructions (e.g., node 
A). All common assembly languages implement 
some jump-if-condition mechanisms. All conditional 
branches implemented in the target assembly lan-
guages are included in the library. 
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Figure 3: Sequential Node 

Each node contains a pointer inside the instruction 
library and, when needed, its parameters (i.e., operand 
values or register specifications). For instance, Figure 3 
shows a sequential node that will be translated into a 
“ORL A, R1” intruction, i.e., a bite-wise OR between 
accumulator and register R1. The instruction library 
may contain different entries corresponding to the same 
instruction. For instance, the entry referring to 
“ORL A, addr”, where the addr parameter is the data 
RAM address, is different from the entry “ORL A, reg” 
where the reg parameter is a register used either as a 
direct or indirect specification. 

The DAG is always translated to a syntactically cor-
rect, loop-less assembly program, although it is not 
possible to infer its semantic meaning. An induced 
program may perform operations on any register and 
any memory locations, and this exceptional freedom is 
essential to generate test programs.  

The library approach developed in [13] enables to 
exploit the genetic core and the DAG structure with 
different microcontrollers or microprocessors that not 
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only implement different instruction sets, but also use 
different formalisms and conventions. Indeed, the 
method has been already successfully tested with a 
DLX, an academic microprocessor implementing a 5-
stage pipeline [14] and a SPARC [15].  

Adopted DAG representation prevents backward 
branches, either conditional or unconditional. This char-
acteristic guarantees program termination, since no 
endless loop may be implemented, but introduces a 
small reduction in semantic power. 

2.2. Test Program Induction 
Test programs are induced by mutating the DAG to-

pology and by mutating parameters inside DAG nodes. 
Both kinds of modifications are embedded in an evolu-
tionary algorithm implementing a (µ+λ) strategy. 

In more details, a population of µ individuals is cul-
tivated, each individual representing a test program. In 
each step, λ new individuals are generated by mutating 
existing ones, parents are selected using tournament 
selection with tournament size τ. After creating new λ 
individuals, the best µ programs in the population of 
(µ+λ) are selected for surviving. The initial population 
is generated creating µ empty programs (only prologue 
and epilogue) and then applying im consecutive random 
mutations to each. 

Three mutation operators are implemented and are 
chosen with equal probability: 
• Add node: a new node is inserted into the DAG. 

The new node can be either a sequential instruction 
or a conditional branch. In both cases, the instruc-
tion referred by the node is randomly chosen. If the 
inserted node is a branch, either unconditional or 
conditional, one of the subsequent nodes is ran-
domly chosen as the destination. Remarkably, when 
an unconditional branch is inserted, some nodes in 
the DAG may become unreachable (e.g., node E in 
Figure 2). 

• Remove node: an existing internal node (except 
prologue or epilogue) is removed from the DAG. If 
the removed node was the target of one or more 
branch, parents’ edges are updated. 

• Modify node: all parameters of an existing internal 
node are randomly changed. Parameters include 
immediate values and register specifications. 
The evolution process iterates until population 

reaches a steady state condition, i.e., no improvements 
are recorded for Sg generations. 

2.3. Test Program Evaluation 
Individuals are evaluated by simulation. The DAG is 

first translated into a syntactically correct assembly 

program and assembled to machine code. Then the 
execution of the test case is simulated on the RT-level 
description of microcontroller, gathering verification 
metric figures. The final value is considered as the fit-
ness value of the individual, i.e., the extent to which it is 
able to produce offspring in the environment.  

Fitness values are used to select λ parents for gener-
ating new offspring through a tournament of size τ (i.e., 
τ individuals are randomly selected and the fittest one is 
picked). Moreover, fitness values are used to determin-
istically select the best µ individuals out of the (µ+λ) 
ones at the end of each evolution step.  

Test program evaluation does not consider the inter-
nal structure of the microprocessor, nor it includes hints 
for increasing the coverage based on designers’ knowl-
edge. 

3. Case Study: the i8051 Microcontroller 

The proposed approach was tested on the i8051 mi-
crocontroller using the statement coverage as a verifica-
tion metric.  

Despite its relatively old age, the i8051 is one of the 
most popular microcontrollers in use today, and many 
derivative microcontrollers are based on it. The i8051 is 
an 8-bit microprocessor originally designed in the 80’s 
by Intel that has gained great popularity since its intro-
duction. Its standard form includes several on-chip 
peripherals, including timers, counters, and UART’s, 
plus 4 Kbytes of on-chip program memory and 128 
bytes of data memory, making single-chip implementa-
tions possible.  

The i8051 memory architecture includes 128 bytes 
of data memory that are accessible directly by its in-
structions. A 32-byte segment of this 128-byte memory 
block is bit addressable by a subset of the i8051 instruc-
tions, namely the bit-instructions. External data memory 
of up to 64 Kbytes is accessible by a special “MOVX” 
instruction. Up to 4 Kbytes of program instructions can 
be stored in the internal memory of the i8051, or the 
i8051 can be configured to use up to 64 Kbytes of ex-
ternal program memory. The majority of the i8051’s 
instructions are executed within 12 clock cycles. 

3.1. Instruction Library 
The i8051 instructions range from 0-operand ones, 

like “DIV AB” (divide accumulator A by B) where all 
operands are implicit, to 3-operand ones, like the 
“CJNE Op1, Op2, RelAddr” (compare Op1 with Op2 
and jump if they are not equal). The i8051 allows 5 
different addressing types: immediate, direct, indirect, 
external direct and code indirect. As in many CISC, 



registers are not orthogonal to the instructions and ad-
dressing modes.  

The instruction library for the i8051 consists in 81 
entries. Prologue, epilogue, 66 sequential operations 
and 13 conditional branches. All instructions related to 
subroutine call and interrupt call were not considered 
for the work described here, and the corresponding 
blocks in the description were not considered during 
statement coverage calculation. 

4. Experimental Results 

A prototype of the proposed approach has been de-
veloped in ANSI C language in about 1,600 lines of 
code. The prototype exploits Modelsim v5.5a by Model 
Technology for simulating the design and getting cover-
age figures. 

The methodology was tested on a synthesizable RT-
level implementation of the i8051 core consisting in 
about 7,500 VHDL lines (the corresponding gate-level 
netlist is about 12K gates). An external data RAM of 2 
Kbytes was connected to the i8051, while no external 
program memory was used.  

 
NAME MODULE LINES STMS
CTR Processor core 5,206 2,121
ALU Arithmetic Logic Unit 429 226
DEC Decoder 270 220
XRM External SRAM interface 77 11

Table 1: i8051 RT-level description 

Four main blocks can be found in the RT-level de-
scription (Table 1): the processor core control logic 
(CTR), the arithmetic and logic unit (ALU), the instruc-
tion decoder (DEC), and the external SRAM interface 
(XRM). The CTR is described behaviorally as a sequen-
tial logic block; the ALU is described behaviorally as a 
combinational logic block; the DEC is described as a 
data-flow implementing a combinational logic block; 
the XRM models an external SRAM. For each block 
Table 1 reports the total number of VHDL lines 
[LINES] and the number of statements [STMS]. 

Inducing a test program with the proposed GP re-
quired about 10,000 generations, corresponding to the 
evaluation of about 100,000 programs. The experiments 
employed about 12 hours of CPU time on a SPARC 
ULTRA Workstation at 400MHz with 2GB of RAM. 
Table 2 shows the parameters adopted. 

To assess the efficiency of the proposed method, the 
induced test program was compared with 5 programs 
devised with 3 different methodologies: compiled prob-
lem-specific algorithms; random test programs; and 

exhaustive functional test case. Table 3 compares the 
different programs in term of required program ROM 
bytes [SIZE] and instructions executed by the program 
[INST]. Statement coverage figures are reported in 
column [TOTAL]. Statistics are also detailed for the 4 
blocks [ALU], [CTR], [DEC] and [XRM]. 

 
PAR MEANINGS VALUE
µ Population size 5 
λ Offspring size 10 
τ Tournament size (selective pressure) 2 
im Initial mutations 100 
Sg Steady state 500 

Table 2: GP parameters 

The two problem-specific algorithms are Fibonacci 
and int2bin. The former calculates the Fibonacci series, 
while the latter converts an integer to a binary represen-
tation. As expected, the coverage figure is quite low. 
Looking at the decoder, it may be easily inferred that 
only a subset of the instruction set is used. Both pro-
grams execute loops (the number of executed instruc-
tions is higher than the number of stored ones). Neither 
program accesses the external data RAM. 

Two different random test programs were consid-
ered. The former, Random (size = GP), was devised 
using the same effort as the GP. 100,000 random pro-
grams of approximately 500 instructions were generated 
and the best one was chosen. The comparison allows 
evaluating the effectiveness of the evolutionary core in 
driving the search process. The latter, Random (size = 
4K), was devised generating 100,000 random programs 
that filled almost all program ROM space and selecting 
the best one. It is included here to allow an estimation 
of the best result attainable with the random approach 
disregarding efficiency. 

Finally, TestAll, an exhaustive functional test pro-
gram, is considered. The test case was devised by the 
microprocessor designer, it is relatively long and in-
cludes several loops. It tests all possible instructions, 
although it is not able to check all possible corner cases 
in the implementation. For instance, “DIV AB” when A 
is less or equal than B was not taken into account. 

The GP induced test program got the highest state-
ment coverage figure with the smallest size and the 
lowest run time. Execution of the test case is fast, since 
there are no loops by construction. Remarkably, there 
are only 7 lines in the circuit description (1 in the ALU 
and 6 in the CTR) that the GP is not able to cover. 
These lines are executed when a conditional branch, 
such as DJNZ or CJMP jumps to a location preceding 
the current one, and these backward jumps cannot be 
generated by the current DAG representation.  



5. Conclusions 

This paper presents a methodology able to automati-
cally induce an assembly test program for a microcon-
troller. The methodology is based on an evolutionary 
paradigm, called genetic programming, and exploits the 
syntactical description of the language. The generated 
test case is able to efficiently maximize a given verifica-
tion metric.  

A prototype of the proposed approach has been de-
veloped in ANSI C language; the method has been 
evaluated on a synthesizable RT-level implementation 
of the i8051 microprocessor using statement coverage 
as verification metric. Induced test programs consis-
tently outperformed test cases devised with alternative 
methodologies.  

Experimental results show the efficiency of the 
methodology. Devising a test case able to reach the 
complete statement coverage is a difficult task, even on 
a small microcontroller like the i8051. Reported data 
show that random programs can hardly test all corner 
cases and also long, carefully designed hand-made test 
cases may not be exhaustive. The automatically induced 
test program, conversely, was able to cover almost all 
(99.7%) of the statements in the description.  

Current work is targeted to apply the proposed ap-
proach to more complex processors and overcome the 
semantic limitations introduced by the DAG constrain. 
A current implementation already includes limited sub-
routine call and backward branch support, and its effec-
tiveness is presently being tested. 
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