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Abstract 

The ASIC design flow is rapidly moving towards 
higher description levels, and most design activities are 
now performed at the RT-level. However, test-related 
activities are lacking behind this trend, mainly since 
effective fault models and test pattern generation tools 
are still missing. This paper proposes techniques for 
implementing a high-level ATPG. The proposed algo-
rithm mixes a code coverage-oriented approach with 
fault-oriented optimizations. Moreover, it exploits a 
fault model at the RT-level that enables efficient fault 
simulation and guarantees good correlation with gate-
level fault coverage.  Experimental results show that the 
achieved results are comparable or better than those 
obtained at the gate level or by similar RT-level ap-
proaches. 

1. Introduction 
In recent years the application-specific integrated 

circuit (ASIC) design flow experienced radical changes. 
Deep sub-micron integrated circuit (IC) manufacturing 
technology is enabling designers to put millions of 
transistors on a single integrated circuit. Following 
Moore’s law, design complexity is roughly doubling 
every 12-18 months. In addition, there is an ever-
increasing demand on reducing time to market. With 
complexity skyrocketing and such a competitive pres-
sure, designing at high levels of abstraction has become 
more of a necessity than an option. 

In this scenario, high-level test pattern generation is 
increasing its industrial relevance [15]. Designers would 
like to foresee an ASIC testability before starting its 
logic synthesis. The design practice is pushing the inser-
tion of design for testability (DfT) structures up to the 
register-transfer (RT) level, and their effectiveness 
should be evaluated as soon as possible. In addition, it 
has been increasingly observed that gate-level sequen-
tial automatic test pattern generation (ATPG) techniques 
may take unacceptable amounts of computing time and 
resources to tackle larger sequential circuits unless 

design-for-testability structures are used. High-level 
ATPG tools are expected to exploit compact informa-
tion about design structure and behavior, and to gener-
ate high-quality test sequences more efficiently. More-
over, it is supposed that high-level generated test 
benches could be able to detect faults that would be 
very hard for gate-level ATPGs [18]. 

This paper presents Prince, an algorithm for imple-
menting a high-level ATPG. The proposed technique 
mixes a code coverage-oriented approach with fault-
oriented optimizations.  

Section 2 sketches some background information, 
Section 3 details the algorithm, Section 4 reports some 
experimental results and Section 5 concludes the paper. 

2. Background 
Tackling test issues above the gate level is a hard 

task, and the lack of a fault model is one of the hardest 
theoretical barriers.  

Code-coverage based fault models, deriving from the 
software testing field, may seem suitable to be applied 
on HDL descriptions. However, coverage metrics such 
as line/block coverage, branch/conditional coverage, 
expression coverage and path coverage lack of direct 
relationships with gate-level stuck-at faults, and their 
applicability in the field of test is difficult. Other con-
siderable difficulties stem from the large amount of 
concurrency, from the complexity of timing schemes 
and from the combined presence of behavioral and 
structural description styles. But, definitely, the main 
problem with code-coverage based fault models is 
probably the lack of an explicit observability concept. 
Coverage metrics only consider reachability, that is like 
fault controllability in the gate-level domain. However, 
any ATPG should tackle faulty-behavior observation as 
well [5]. 

[16] presents TAO, a two-pass approach using a 
symbolic RTL test generator. The proposed testing 
paradigm involves writing path equations for modules, 
given the RTL connectivity, and solving them to obtain 
regular expressions for control paths.  



Probably, the most successful proposal of a hard-
ware-related high-level fault model is Observability-
Enhanced Statement Coverage [7]. It introduces the 
concept of tag as the possibility that an incorrect value 
is computed at a given location, thus approximating the 
effects of fault propagation. Since this fault model does 
not assume any specific fault effect, its generality pre-
vents explicit fault simulation. 

The first ATPG exploiting Observability-Enhanced 
Statement Coverage  was presented in [6]. The vector 
generation procedure is based on hybrid linear pro-
gramming and Boolean satisfiability methods.  

ARTIST, a different RT-level ATPG exploiting high-
level information to reach high code-coverage figures, 
was presented in [3]. Differently from [6], ARTIST is a 
simulation-based approach. It is based on an evolution-
ary algorithm coupled with a commercial VHDL simu-
lator, and due to the adoption of a commercial tool, it is 
able to produce sequences for general synthesizable 
VHDL description, with few limitations in complexity 
and characteristics, and it does not require any effort for 
re-modeling circuits or extracting special information. 
However, neglecting observability, sequences generated 
by ARTIST are not optimized for test purpose. 

In [4], ARTIST code-coverage metric was aug-
mented with simplified observability. Fault-coverage 
figures dramatically increased, but the lack of a real 
fault model prevented the usage of a fault-dropping 
mechanism. ARTIST was given the goal to increase an 
observability measure, without meaningful stopping 
condition. Thus, the approach was not suitable for larger 
designs. 

In [1] an extension of observability-enhanced state-
ment coverage was proposed. In the new model, explicit 
RT-level assignment single-bit stuck-at’s are used in-
stead of generic tags. An RT-level assignment single-bit 
stuck-at fault is defined as a single-bit stuck-at in the 
effect of an RT-level assignment operation: when a fault 
is present, the affected object (signal or variable target 
of an assignment statement) loads the correct value, 
except for one bit that is forced to 0 or 1. Experimental 
figures show that this model is highly correlated with 
gate-level coverage.  

In [8] Ferrara et al. presented BEHATE, an RT-level 
tool based on a metric called bit-coverage, close to the 
RT-level assignment single-bit. Although the paper is 
aimed at functional verification, experimental results 
show a strong relation between high- and gate-level 
faults. 

[2] shows a simulation techniques based on simula-
tion command scripts that allows efficient exploitation 
of RT-level assignment single-bit faults. Using the Tcl 
interface of a commercial simulator, the simulation of 

each faulty circuit is shown no more costly than simula-
tion of the original circuit. 

This paper presents new techniques for devising a 
high-level ATPG process. The proposed algorithm, 
described in the next sections, mixes a coverage-
oriented approach with fault-oriented optimizations. 
First, the RT-level circuit description is automatically 
analyzed to extract static structural information, control 
and data dependencies, and to group statements in ba-
sic-blocks. Then a code coverage approach is exploited 
to excite the RT-level assignment single-bit faults. After 
excitation, fault effect propagation and observation are 
tackled utilizing simulation scripts. In conclusion, a 
fault dropping phase is run to optimize the process.  

3. ATPG System 
Prince, the ATPG algorithm (Figure 1), was devel-

oped exploiting the RT-level assignment single-bit fault 
model [1] and a simulation-based approach [2]. It in-
crementally builds a test set, adding new sequences 
through different stages, mixing a coverage-oriented 
approach with fault-oriented optimizations.  
 

Initialization and first fault dropping 

Any non-empty Θt? 

Θt still contains faults? 

end 

no 

no 

yes 

yes 
Devise σti

D to detect some fault in Θt 
Perform fault dropping using σti

D 

Devise σt
E to reach βt  

Perform fault dropping using σt
E 

start 

 

Figure 1: Overall algorithm 

In different steps Prince exploits a genetic algorithm 
(GA) to seek new sequences. The goals of the different 
stages are different, thus the GA is given different fit-
ness functions and different initial conditions. However, 
its general structure is the same. 

The GA in Prince evolves a population of p indi-
viduals with an offspring ratio of po in each generation. 
It implements a steady-state evolution, i.e., new indi-
viduals are first added to the population, and then the p 
fittest ones are chosen for survival. Individuals are 
selected for reproduction using their linearized fitness. 
With a probability p, the new individual is built mutat-



ing a single parent: the original sequence can be short-
ened, or enlarged, or some bits may be flipped. Other-
wise the new individual is built mating two sequences: 
it can inherit the beginning from one parent and the end 
from the other, or some entire bit column from each 
parent. The GA evolves until the goal is reached, or 
until the maximum number mg of generations have been 
evaluated, or after ms generations without any fitness 
improvement in the best individual. 

At the end of the process, sequences may easily be 
compacted with a simple algorithm. Next Sections de-
tails the process.  

3.1. Fault Model 
The RT-level single-bit stuck-at fault model was pre-

sented in [1]. In this model, a fault is defined as a sin-
gle-bit stuck-at in the effect of an RT-level assignment 
operation: when a fault is present, the affected object 
(signal or variable target of an assignment statement) 
loads the correct value, except for one bit that remains 
stuck to 0 or 1. 

Faults are single and permanent: only one fault is in-
serted at a time and the fault effect is present during the 
whole simulation. The RT-Level single-bit stuck-at fault 
model does not explicitly consider control-flow faults, 
such as stuck-at-true or stuck-at-false. 

Initially, the Fault List contains the list of all RT-
Level single-bit stuck-at faults. However, during syn-
thesis the RT level VHDL description is optimized in 
order to create an efficient gate-level design. The opti-
mization process analyzes the VHDL description and 
simplifies all logic eliminating redundancies. In this 
phase some RT-level stuck-at faults lose their corre-
spondent gate-level faults. In order to prevent this dis-
crepancy is necessary to identify which parts of the 
logic described at the RT-level disappear during the 
optimization phase of the synthesis process and to 
eliminate the associated faults from the Fault List. 

To perform Fault Simulation a serial fault simulation 
strategy is adopted. The good and each faulty machine 
are simulated, comparing their outputs. A fault is 
marked as detected, if it produces a difference on a 
Primary Outputs of the circuit at the end of a clock 
cycle. To run the simulations, the Test Pattern is first 
transformed to a set of commands that force the correct 
waveform for input signals, and the Fault List is trans-
formed to a set of script commands for injecting faults 
during simulation. 

Fault injection is made possible by creating routines 
that change the target signal/variable bit value during 
simulation, using the simulator scripting language (Tcl), 
when a given target assignment instruction is executed. 
The fault injection procedures must face various issues 

derived from the fault model, from VHDL Semantics 
and from the simulator itself. 

Further details can be found in [2]. 

3.2. Analysis 
The analysis aims at building a simplified internal 

model of the circuit.  
Static structural information, control dependencies 

and data dependencies are extracted. The RT-level hier-
archy is analyzed and processes broken down into basic 
blocks, i.e., blocks of statements that are guaranteed to 
be always executed together.  

Then a correlation matrix C is inferred mixing the 
control-flow analysis with data dependencies. Let βi and 
βj be two basic blocks, the element cij of the correlation 
matrix C estimates the conditional probability that βj 
will be executed given the execution of βi. 

The analysis is an automatic process performed 
through commercial tools for parsing VHDL. Each 
circuit has to be been analyzed only once, since infor-
mation gathered during analysis does not depends on 
the results of the ATPG process. 

This step is identical to the first step in [4]. 

3.3. Initialization 
The initialization goal is to remove easy-to-detect 

faults.  
Prince starts its GA to cultivate a sequence that 

maximizes the basic-block coverage. The initial popula-
tion is generated randomly. The fitness function simply 
counts the number of covered basic blocks, without 
exploiting the knowledge of design structure. See func-
tion (1) in Figure 2. 

Once such a sequence is generated, it is added to the 
final test set and simulated against all RT-level faults 
(see Fault Dropping, below). 
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Figure 2: Different fitness functions 

3.4. Basic-Block Fault Detection 
After easy-to-detect RT-level faults have been re-

moved, Prince starts the main ATPG process.  
Let βi be the i-th basic block, and Θi the set of all still 

undetected RT-level single-bit faults on assignments 
performed inside βi. The basic-block fault detection 
stage is iterated for each non-empty Θi.  



Let Θt be a non-empty set of faults selected as target 
for the fault detection stage. Prince first tries to create a 
sequence E

tσ  able to cover basic block βt. The search 
exploits the same GA described in 3. The fitness func-
tion counts each activated basic block βa weighting it 
with its correlation with the target βt.. See function (2) 
in Figure 2. 

If such a sequence E
tσ  is found, it is guaranteed that 

all statements of βt are executed, however it is not cer-
tain that faults in Θt are excited: the faulty value of the 
bit may be the same as the good one. Nevertheless, 
since E

tσ  is potentially a useful sequence and it is 
added to the final test set. When the GA is halted, the 
set Ψ of the p sequences in the last population is stored 
for later usage. 

At this point, Prince start trying to detect all faults fti 
of Θt. Here, as in gate-level ATPG, “detect” implies 
exciting the fault and then observing it, by propagating 
its effect to a primary output. At the present, Prince 
exploits the simulation mechanism described in [2]: a 
loose interaction with a commercial VHDL simulator 
carried out through Tcl scripts.  

The new step still exploits the GA described above. 
The initial population is loaded from Ψ and a third 
fitness function is adopted. This fitness function meas-
ures how many faults in Θt have been detected, how 
close is the sequence to observe new faults and how 
many faults in Θt have been excited. The three contribu-
tions are weighted in decreasing importance, thus ob-
serving is more important than exciting, and so on. See 
function (3) in Figure 2. 

Once a sequence D
tiσ  able to detect new faults is 

found, it is added to the final test set. Then all faults 
detected by D

tiσ  are removed from Θt.  It should be 
noted that removing detected faults from Θt leads to a 
change in the fitness function, because during fitness 
calculation only faults in Θt are considered. Finally, the 
whole population is re-evaluated and sorted according 
to the new criteria. Detection is iterated until Θt is 
empty or the GA aborts. 

3.5. Fault Dropping 
Each time a new sequence σ is added to the final test 

set, it is simulated against all still undetected RT-level 
faults. The fault-dropping phase exploits structural 
information. Prince simulates σ to get the list of covered 
basic blocks, and only the faults on covered statements 
are injected. 

The speed-up archived by fault dropping is consider-
able. When Prince tackles the b14 benchmark, for in-

stance, more than 7,500 RT-level faults (67% of the 
total) are dropped in this stage. However, it should be 
pointed out that it is the most time-consuming step of 
the algorithm. RT-level fault simulation, in general, is a 
resource-consuming task. In the proposed approach the 
circuit is not modified and does not need to be recom-
piled, however relying on an external commercial simu-
lator introduces some overhead. Forcing new values 
during simulation, several RT-level faults cause over-
flows and boundary-check errors. Prince can handle all 
these exceptions, but it cannot handle them efficiently. 
When the simulator hangs, its process must be killed 
using unix signals and it must started again. 

4. Experimental Results 
To evaluate observability techniques, we analyze the 

ITC’99 VHDL RT-level benchmark circuits. Circuit 
characteristics are summarized in Table 1.  

 
Circuit VHDL Gate-level 

 PI PO #line #p Faults #gate #FF faults 
b01 2 2 110 1 137 46 5 258
b02 1 1 70 1 80 28 4 150
b03 4 4 141 1 242 149 30 822
b04 11 8 102 1 635 597 66 3,356
b05 1 36 332 3 1,144 935 34 5,552
b06 2 6 128 1 207 60 9 302
b07 1 8 92 1 349 420 49 2,404
b08 9 4 89 1 153 167 21 918
b09 1 1 103 1 212 159 28 900
b10 11 6 167 1 258 189 17 1,054
b11 7 6 118 1 458 481 31 2,868
b12 5 6 569 4 1,272 1,036 121 6,084
b13 10 10 296 5 421 339 53 1,818
b14 32 54 509 1 11,054 4,775 245 28,990
b15 36 70 671 3 4,546 8,893 449 55,568
b20 32 22 1,085 3 20,882 9,419 490 57,794
b21 32 22 1,089 3 20,882 9,803 490 60,052
b22 32 22 1,613 4 33,462 15,071 735 92,536

Table 1: Benchmark characteristics 

The first columns report the benchmark names, and 
the number of Primary Inputs and Outputs. The second 
column group reports data about RT-level descriptions: 
number of VHDL lines, number of VHDL processes 
(#p), and number of RT-level faults. Gate-level descrip-
tions are also available and the following column group 
reports their characteristics in terms of number of com-
binational gates, number of Flip-Flops and number of 
stuck-at faults. 

In the experiments, the population is composed of 
p=50 individuals, with an offspring ratio of po=60%. 



Thus, in each generation 30 new sequences are first 
generated, then selection is performed on the whole set 
of 50+30 individuals. The mutation rate was set to 0.3, 
hence in 30% of the cases, the new individual is built 
mutating a single parent, while in 70% of the cases the 
new individual is built mating two different sequences. 
mg was set to 50, and ms was set to 10 for all circuits. 

Experiments were run on a Sun Enterprise 250 run-
ning at 400 MHz and equipped with 2 Gbytes of RAM. 
CPU times required range from some hours to two days 
and are mainly due to the lack of flexibility of the 
commercial RT-level simulator. The efficiency of the 
approach would greatly increase whenever a closer 
interaction with the simulation core will be available. 

Table 2 summarizes the results achieved by Prince 
on the benchmark circuits. The length of the test set 
(after compaction) is reported in the second column. 
Next column reports the fault coverage attained on RT-
level fault list. After generation, test sets were simulated 
against gate-level netlists and the stuck-at fault cover-
age is reported in the last column.  

 
Fault Coverage [%] Circuit Vec 

RT Gate 
b01 44 95.62 100.00 
b02 35 98.75 99.33 
b03 139 75.62 74.82 
b04 852 59.53 90.52 
b05 138 51.14 33.43 
b06 49 90.34 97.35 
b07 89 71.92 58.28 
b08 1,388 84.97 97.49 
b09 1,102 92.45 85.33 
b10 325 82.95 91.37 
b11 2,121 78.82 91.77 
b12 3,329 35.77 40.83 
b13 4,193 76.96 84.76 
b14 11,565 85.15 81.84 
b15 864 44.57 23.75 
b20 154,974 89.18 87.70 
b21 51,463 89.31 88.21 
b22 91,547 86.48 86.28 

Table 2: Prince Results 

In Table 3 gate-level stuck-at fault coverage are 
compared with previous works (the Fault Coverage 
represents the percentage of detected faults in the fault 
list). Table 3 compares the proposed approach with two 
RT-level tools: ARTIST (column 3) and the observabil-
ity-enhanced version of ARTIST (4). It would also have 
been interesting compare Prince with BEHATE [8], an 
RT-level tool developed by Ferrandi et al. However, 
authors reported the number of detected faults without 

mentioning which fault list they are using. And these 
numbers are higher than the number of both collapsed 
and un-collapsed faults reported in [3]. For the sake of 
comparison, Table 3 also reports data for a state-of-the-
art commercial tool (Comm.) and a state-of-the-art aca-
demic tool (12).  

 
RT-level gate-level Circ. 

Prince [3] [4] [12] Comm. 
b01 100.00 100.00 100.00 n.a. 100.00 
b02 99.33 99.33 99.33 n.a. 99.33 
b03 74.82 74.33 74.82 n.a. 74.82 
b04 90.52 89.42 91.03 n.a. 91.51 
b05 33.43 33.50 33.50 n.a. 33.38 
b06 97.35 97.02 97.35 n.a. 97.35 
b07 58.28 57.53 58.28 n.a. 57.28 
b08 97.49 86.27 71.68 n.a. 98.15 
b09 85.33 81.33 81.33 n.a. 90.56 
b10 91.37 90.42 90.99 n.a. 92.22 
b11 91.77 85.98 90.62 92.19 81.00 
b12 40.83 45.99 44.49 49.03 21.17 
b13 84.76 68.37 n.a. n.a. 59.19 
b14 81.84 79.65 n.a. n.a. 95.04 
b15 23.75 31.96 n.a. n.a. 16.26 
b20 87.70 79.99 n.a. n.a. 26.57 
b21 88.21 82.61 n.a. 82.81 55.14 
b22 86.28 71.59 n.a. n.a. 55.79 

Table 3: Stuck-at comparison 

Experimental results show that Prince is usually su-
perior and at least comparable to both versions of 
ARTIST, the original one presented in [3] and the ob-
servability-enhanced one presented in [4]. It is remark-
able that Prince was able to generate test sequences 
even for the larger benchmarks, while the observability-
enhanced ARTIST cannot tackle circuits bigger than 
b12. 

Compared to gate-level approaches, results are con-
vincing. The attained Fault Coverage is higher than the 
commercial ATPG and, for b21, considerably higher 
than the state-of-the-art academic approach. Yet the few 
data presented in [12] prevent a more insightful com-
parison. 

Benchmarks b12 and b15 are difficult even for gate-
level ATPGs, but they deserve some comments. They 
both need extremely long and specific test sequences to 
activate all functionalities (b12 implements a guess-a-
sequence game, b15 a microprocessor). For the sake of 
performance, Prince was pushed to avoid such a long 
sequences and this choice may have penalized it. In 
fact, even the statement coverage figures for the two 
benchmarks are quite low: 68.72% for b12 and 63.04% 



for b15. More experiments are being performed to bet-
ter understand this behavior. 

5. Conclusions 
Due to the wide adoption of logic synthesis tools, 

RT-level ATPG techniques are increasingly necessary in 
order to shift test-related activities towards the descrip-
tion level adopted by designers. A crucial point for 
developing effective high-level ATPGs lies in the identi-
fication of a suitable fault model, which should guaran-
tee a good correlation with gate-level fault coverage 
figures while allowing the implementation of an ATPG 
algorithm. 

This paper presented Prince, an algorithm for im-
plementing a high-level ATPG, exploiting code cover-
age-oriented approach with fault-oriented optimizations. 
Prince adopts a fault model at the RT-level that enables 
efficient fault simulation and guarantees good correla-
tion with gate-level fault coverage. 

Experimental results showed that Prince is broadly 
applicable, and it attains fault coverage figures usually 
superior and at least comparable to other RT-level ap-
proaches. Also compared to gate-level approaches, 
results are considerable.  

The two cases in which the approach is less satisfac-
tory were analyzed and are currently under a deeper 
study. 

6. Acknowledgments 
The authors wish to thanks Fabio Salto for his help 

in implementing Prince and for performing all the ex-
periments. 

7. References 
[1] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, 

“An RT-level Fault Model with High Gate Level Corre-
lation,” IEEE International High Level Design Valida-
tion and Test Workshop, November 8-10, 2000 

[2] F. Corno, G. Cumani, M. Sonza Reorda, Giovanni 
Squillero, “RT-level Fault Simulation Techniques based 
on Simulation Command Scripts,” DCIS 2000: XV Con-
ference on Design of Circuits and Integrated Systems, 
November 21-24, 2000 

[3] F. Corno, M. Sonza Reorda, G. Squillero, “RT-Level 
ITC 99 Benchmarks and First ATPG Results,” IEEE De-
sign & Test, Special issue on Benchmarking for Design 
and Test, July-August 2000, pp. 44-53 

[4] F. Corno, M. Sonza Reorda, G. Squillero, “High-Level 
Observability for Effective High-Level ATPG,” 
VTS2000: 18th IEEE VLSI Test Symposium, May 2000, 
pp. 411-416 

[5] S. Devadas, A. Ghosh, K. Keutzer, “An Observability-
Based Code Coverage Metric for Functional Simulation,” 

Proceedings IEEE/ACM International Conference on 
Computer Aided Design, 1996 

[6] F. Fallah, P. Ashar, S. Devadas, “Simulation Vector 
Generation from HDL Descriptions for Observability-
Enhanced Statement Coverage,” 35th Design Automation 
Conference, 1999, pp. 666-671 

[7] F. Fallah, S. Devadas, K. Keutzer, “OCCOM: Efficient 
Computation of Observability-Based Code Coverage 
Metrics for Functional Verification,” 34th Design Auto-
mation Conference, 1998 

[8] G. Ferrara, F. Ferrandi, A. Fin, F. Fummi, D.Sciuto, 
“Functional Test Generation for Behaviorally Sequential 
Models”, Proceedings IEEE Design Automation and Test 
in Europe Conference (DATE), Muenchen, Germany, 13-
16 Marc 2001, pp.403-410.  

[9] F. Ferrandi, F. Fummi, L. Gerli, D. Sciuto, “Symbolic 
Functional Vector Generation for VHDL Specifications,” 
35th Design Automation Conference, 1999, pp. 442-446 

[10] F. Ferrandi, G. Ferrara, D. Sciuto, A. Fin, F. Fummi, 
“Functional Test Generation for Behaviorally Sequential 
Models”, Proc. IEEE Design Automation and Test in 
Europe Conference (DATE), Muenchen, Germany, 13-16 
Marc 2001, pp.403-410 

[11] A. Fin, F. Fummi, “A VHDL Error Simulator for Func-
tional Test Generation,” IEEE European Design, Auto-
mation and Test Conference, 2000,  pp. 390-395 

[12] A. Giani, S. Sheng, S. Hsiao, I. Agrawal, “Compaction-
Based Test Generation Using State and Fault Informa-
tion”, in Proceedings Asian Test Symposium, pp. 159-
164, 2000 

[13]  A. Giani, S. Sheng, M. Hsiao, V. Agrawak, “Efficent 
Spectral techniques for Sequential ATPG”, Proceedings 
of the IEEE Design Automation and Test in Europe Con-
ference, March, 2001 

[14]  H. S. Hsiao, E. M. Rudnick, J. H. Patel, “Dynamic State 
Traversal for Sequential Circuit Test Generation”, ACM 
TODAES, vol. 5, n. 3, July 2000, pp. 548-565 

[15] High Time for High-Level Test Generation, Panel at the 
IEEE International Test Conference, 1999, 
pp. 1112-1119 

[16] S. Ravi, G. Lakshminarayana, and N. K. Jha, “TAO: 
Regular expression based high-level testability analysis 
and optimization”, in Proceedings International Test 
Conference, pp. 331–340, 1998 

[17] P. A. Thaker, V. Agrawak, M. Zaghloul, “Register-
Transfer Level Fault Modeling and Test Evaluation 
Techniques for VLSI Circuits”, Proceedings Interna-
tional Test Conference (ITC2000), 2000, pp. 940-949 

[18] M. B. Santos, F. M. Gonçalves, I.C. Texeira, J. P. 
Texeira, “RTL-Based Functional Test Generation for 
High Defects Coverage in Digital SOCs”, IEEE Euro-
pean Test Workshop, 2000, pp. 99-104 


