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Abstract 

The continuous advances in microelectronics design are creating a significant challenge to design 
validation in general, but tackling pipelined microprocessors is remarkably more demanding. This 
paper presents a methodology to automatically induce a test program for a microprocessor maximizing 
a given verification metric. The approach exploits a new evolutionary algorithm, close to Genetic 
Programming, able to cultivate effective assembly-language programs. The proposed methodology was 
used to verify the DLX/pII, an open-source processor with a 5-stage pipeline. Code-coverage was 
adopted in the paper, since it can be considered the required starting point for any simulation-based 
functional verification processes. Experimental results clearly show the effectiveness of the approach. 
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The continuous advances in microelectronics design are creating a significant challenge to design 
validation in general, but tackling pipelined microprocessors is remarkably more demanding. This 
paper presents a methodology to automatically induce a test program for a microprocessor maximizing 
a given verification metric. The approach exploits a new evolutionary algorithm, close to Genetic 
Programming, able to cultivate effective assembly-language programs. The proposed methodology was 
used to verify the DLX/pII, an open-source processor with a 5-stage pipeline. Code-coverage was 
adopted in the paper, since it can be considered the required starting point for any simulation-based 
functional verification processes. Experimental results clearly show the effectiveness of the approach 

1. Introduction 

Developments in semiconductor technology have made possible to design an entire system onto a single 
chip, a connected practice is the usage of predefined logic blocks known as cores. A core is a highly 
complex logic block predictable, reusable, and fully defined in terms of its behavior. System designers 
can purchase cores from core-vendors and integrate them with their own user-defined logic to 
implement devices more efficiently.  

The continuous advances in the design field are creating a significant challenge to design validation. For 
most cores, the hardest verification problem is to ensure the correctness of microarchitectural features in 
the initial description. This design is usually described at register-transfer level in a hardware description 
language, i.e., as a set of interconnected functional blocks. The difficulty of validation stems from the 
complexity of design, and the resulting large state space which needs to be searched in order to check 
for correctness. The validation of a microprocessor is known to be a challenging problem [ShAb99] and 
technology advances is hardening it. Today, the validation of cores based on microprocessors has 
become exceptionally complex since they may include advanced features, such as caches and pipelines, 
that a few years ago were limited to high-class microprocessors.  

Different activities performed in different stages of the design flow and at different level of abstraction 
can be sensibly called verification. These activities include checking equivalence of different models, 
ensuring the conformity to specifications, electrical and post-silicon testing. Reviewing all design 
verification aspects would deserve a very long discussion, but it is possible to distinguish between two 
classes of approaches: formal and simulation-based.  

Formal methods try to verify the correctness of a system by using mathematical proofs, whereas 
simulation-based design verification tries to uncover design errors by detecting a circuit faulty behavior 
when deterministic or pseudo-random tests are applied. Formal methods implicitly consider all possible 
behaviors of the models representing the system and its specification, and the accuracy and 
completeness of the system and specification models, as well as required computation resources, are a 
fundamental limitation. On the contrary simulation-based methods do not suffer from the same 
constraints, but can only consider a limited range of behaviors and will never achieve 100% confidence 
of correctness.  



Formal verification methods for complex microprocessor designs has been targeted by several 
researchers in the past [Harm91], [CMHa99] and [VeBr00] but, although results were considerable, all 
proposed techniques suffer from severe drawbacks and need considerable human efforts to handle entire 
designs of today’s processors and advanced microarchitectural features. 

This paper targets simulation-based verification performed when a register-transfer level model is 
available, thus at a rather early step of the design flow. It can be maintained that almost all verification 
processes include at least some simulation-based steps where specific test programs are simulated to 
detect faulty behaviors. 

Code coverage metrics are the required starting point for simulation-based processes. Coverage analysis 
measures the number of executed statements in a description during a simulation, ensuring that no part 
of the design missed functional test during the experiment. Moreover, it may help reducing simulation 
effort avoiding “over-verification” and redundant testing. Although more complex and theoretically 
insightful metrics have been proposed, the use of coverage analysis provides an easy, fast and objective 
way of measuring simulation effectiveness. Indeed, most CAD vendors have recently added the 
possibility to measure code-coverage figures to their simulators. 

Despite the simplicity of the metric, devising a test program able to reach a high statement coverage 
figure may be a challenging task. The task is particularly challenging for pipelined microprocessor, since 
in such architectures consecutively-executing instructions can have their execution overlapped in time. 
In a pipelined microprocessor, instruction execution steps are arranged so that the CPU doesn't have to 
wait for one operation to finish before starting the next. Thus, at any given time, the CPU is at the same 
time executing some instructions and fetching next ones in the program. The first consequence is that it 
is not only necessary to check the functionalities of all possible instructions with all possible operands, 
but it is also necessary to check all possible interactions between instructions inside the pipeline. 

Cross-compiled high-level routines have little chance to attain good results in term of statement 
coverage even on simpler cores, due to the intrinsic nature of the algorithms and due to compiler 
strategies they are not usually able even to test functionalities in non-pipelined microprocessors 
[CCSS02b]. 

Hand-designed test benches are very difficult to devise since the execution of multiple instructions in the 
pipeline may lead to Byzantine interactions [CMHa99]; they require a long effort by skilled engineers, 
thus they are highly expensive. Finally, relying on a hand-made approach often means loosing the 
possibility of checking highly unpredictable corner cases. 

This paper presents an evolutionary approach to the generation of test programs for functional 
verification. To evaluate the approach, the statement coverage metric is exploited. The approach exploits 
MicroGP, an evolutionary algorithm stemming from Genetic Programming [Koza98] and specifically 
tuned to generate assembly programs instead of traditional lisp S-expressions. MicroGP [CCSS02a] 
relies on a syntactical description of an assembly language and on a function able to evaluate the fitness 
of individuals, i.e., to evaluate how close programs in the population are to the final goal. A similar 
approach has been exploited in [CCSS02b] for the verification of the i8051, a core with no pipeline 
enhancements. For the purpose of this paper, the program representation has been significantly 
enhanced, increasing the semantic power.  



2. Simulation Based Design Verification 

Given an RT-level description of a microprocessor, simulation-based verification requires a test program 
and a tool able to simulate its execution. The goal is to uncover all design errors, and the effectiveness of 
the test program is usually evaluated with regards to some metric. 

As stated before, the verification metric exploited in this paper is the statement coverage. To avoid 
confusion, in the following the term “instruction” denotes an instruction in an assembly program, and 
the term “statement” refers to a statement in an RT-level description. The term “execute” is commonly 
used in both domains: instructions in a program are executed by the microprocessor when it fetches 
them and operates accordingly; statements in a description are executed when the simulator evaluates 
them to infer design behavior. The code coverage metric exploited in this paper measures the percentage 
of executed RT-level statements over the total when the execution of a given test program is simulated. 

The simplest method to obtain an assembly test program is probably to compile a high-level routine. 
This approach relies on a compiler or cross-compiler, an easily met requirement. However, despite their 
effortlessness, compiled problem-specific algorithms are severely inadequate to uncover design errors. 
First of all, due to the intrinsic nature of the algorithms, the resulting program may not be able to expose 
all functionalities. Then compilers adopt strategies for optimizing the code with regard to some 
parameter, such as size or speed, thus the usually do not exploit all possible assembler instructions and 
addressing modes, but only the more efficient ones.  

A better strategy is to generate random assembly programs. This approach is likely to cover more 
statements in the description, but is less straightforward. A randomly generated program may easily 
contain illegal operations, such as division by zero, or endless loops. However, the effort required to 
generate a syntactically correct assembly source is still moderate. The main drawback of this method is 
that a random program will hardly cover all corner cases, hence resulting in low statement coverage. In 
order to obtain a sufficient coverage a large number of long programs are needed, resulting in overlong 
simulation times. 

The approach for devising a test program presented in this paper is based on an evolutionary algorithm. 
The induction of the test case is fully automated and only requires a syntactical description of the 
assembly implemented by the microprocessor. The resulting program is reasonably short and maximizes 
the target verification metric. 

3. Genetic Programming for Test Program  

The overall architecture is shown in Figure 1. The microprocessor assembly language is described in an 
instruction library, and the test case generator generates efficient test programs exploiting it. The 
execution of each assembly program is simulated with an external tool, and the corresponding statement 
coverage is used to drive the optimization process.  
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Figure 1: System Architecture 

Genetic Programming (GP) was defined as a domain-independent problem-solving approach in which 
computer programs are evolved to solve, or approximately solve, problems [Koza98]. GP addresses one 
of the more desired goals of computer science: creating, in an automated way, computer programs able 
to solve problems.  

Traditional GP induced programs are mathematical functions that, after being evaluated, yield a specific 
result. The pioneering ideas of generating real (Turing complete) programs date back to [Frie58]. More 
recently [Nord94] and [NoBa95] suggested to directly evolve programs in machine-code form for 
completely removing the inefficiency in interpreting trees. A genome compiler has been proposed in 
[FSMu98], which transforms standard GP trees into machine code before evaluation. 

This paper exploits a versatile GP-like approach for inducing assembly programs presented in 
[CCSS02a]. The methodology exploits a directed acyclic graph (DAG) for representing the flow of the 
program (Figure 2). The DAG is built with four kinds of nodes: prologue (with out-degree 1), epilogue 
(with out-degree 0), sequential instruction (with out-degree 1), and branch (with out-degree 2). A similar 
graph-based representation for GP has been developed for different purposes in [KaBa02].  

• prologue and epilogue nodes are always present and represent required operations, such as 
initializations. They depend both on the processor and on the operating environment, and they may be 
empty. The prologue has no parent node, while the epilogue has no children. These nodes may never 
be removed from the program, nor changed. 

• Sequential-instruction nodes represent common operations, such as arithmetic or logic ones (e.g., 
node B). They are always followed by exactly one child. The number of parameters (i.e., numeric 
constants or register specifications) changes from instruction to instruction, following assembly 
language specification. Unconditional branches are considered sequential, since execution flow does 
not split (e.g., node D). 

• Conditional-branch nodes are translated to assembly-level conditional-branch instructions (e.g., 
node A). All common assembly languages implement some jump-if-condition mechanisms. All 
conditional branches implementbed in the target assembly languages are included in the library. 

Each node contains a pointer inside the instruction library and, when needed, its parameters. For 
instance, Figure 2 shows a sequential node that will be translated into a “XOR r19, r13, r11” instruction, 
i.e., a bit-wise EXOR between registers r13 and r11 that stores the result in register r19.  

The DAG is translated to a syntactically correct assembly program, although it is not possible to infer its 
semantic meaning. An induced program may perform operations on any register and any memory 
locations, and this exceptional freedom is essential to generate test programs.  



The DAG representation and the instruction library adopted in [CCSS02a] and [CCSS02b] prevented 
backward branches, either conditional or unconditional. This characteristic guaranteed program 
termination, since no endless loop may be implemented, but introduced a reduction in semantic power. 
To verify the DLX core this restriction was discarded and the MicroGP was given the possibility to 
generate assembly program with branches anywhere in the memory space exploiting special jump 
registers instructions. These instructions perform unconditional jumps to the target address contained in 
a register and are represented as simple sequential-instruction in the DAG. 

The library approach developed in [CCSS02a] enables to exploit the genetic core and the DAG structure 
with different microcontrollers or microprocessors that not only implement different instruction sets, but 
also use different formalisms and conventions. Indeed, the method has been already successfully tested 
with an i8051 [CCSS02b] and a SPARC [SPARC]. 

3.1. Test Program Induction 

Test programs are induced by mutating the DAG topology and by mutating parameters inside DAG 
nodes. Both kinds of modifications are embedded in an evolutionary algorithm implementing a (µ+λ) 
strategy. 

In more detail, a population of µ individuals is cultivated, each individual representing a test program. In 
each step, λ new individuals are generated by mutating existing ones, whose parents are selected using 
tournament selection with tournament size τ  (i.e., τ individuals are randomly selected and the fittest one 
is picked). After creating new λ individuals, the best µ programs in the population of (µ+λ) are selected 
for surviving. The initial population is generated by creating µ empty programs (only prologue and 
epilogue) and then applying im consecutive random mutations to each. 

Three mutation operators are implemented and are chosen with equal probability: 

• Add node: a new node is inserted into the DAG. The new node can be either a sequential instruction 
or a conditional branch. In both cases, the instruction referred by the node is randomly chosen. If the 
inserted node is a branch, either unconditional or conditional, one of the subsequent nodes is 
randomly chosen as the destination. Remarkably, when an unconditional branch is inserted, some 
nodes in the DAG may become unreachable (e.g., node E in Figure 2). 

• Remove node: an existing internal node (except prologue or epilogue) is removed from the DAG. If 
the removed node was the target of one or more branch, parents’ edges are updated. 

• Modify node: all parameters of an existing internal node are randomly changed. Parameters are 
numerical immediate values and register specifications. 

The evolution process iterates until population reaches a steady state condition, i.e., no improvements 
are recorded for Sg generations. 

3.2. Test Program Evaluation 

Individuals are evaluated by simulation. The DAG is first translated into a syntactically correct assembly 
program and assembled to machine code. Then the execution of the test case is simulated on the RT-
level description of microcontroller, gathering verification metric figures (statement coverage). The final 



value is considered as the fitness value of the individual, i.e., the extent to which it is able to produce 
offspring in the environment.  

Fitness values are used to probabilistically select the λ parents for generating new offspring and to 
deterministically select the best µ individuals at the end of each evolution step.  

Test program evaluation does not consider the internal structure of the microprocessor, nor does it 
include hints for increasing the coverage based on designers’ knowledge. 

4. Experimental Results 

A prototype of the proposed approach has been developed in ANSI C language in about 2,000 lines of 
code. The prototype exploits Modelsim v5.5a by Model Technology for simulating the design and 
getting coverage figures. The proposed approach was tested on DLX/pII, an open-source 
implementation of the processor model detailed by Hennesey and Patterson in [PaHe96] implementing a 
5-stage pipeline. The description consists of about 1,000 register-transfer level statements in VHDL.  

Starting from a high-level syntactical description of the DLX assembly language, the prototype induced 
an effective test program in about two days on a Sun Enterprise 250 with an UltraSPARC-II CPU at 
400MHz, and 2GB of RAM. Evolution required simulating about 10,000 different test benches. 

Experimental results showed that devising a test case able to reach complete statement coverage on a 
pipelined processor is a challenging task, even on a relatively simple processor. In Table 1, the statement 
coverage ([SC%]) obtained by the induced test program is compared with the one attained by different 
functional test programs provided by microprocessor implementers (set_s, set_su, arith_s, carry_su, fak, 
jump1, loadstore_s, loadstore_su, mul_su, intrpt1, except), problem-specific algorithms (mul32 and 
div32), system software (system01) and an exhaustive functional test that checks all possible instructions 
(all_instr). Table 1 also reports the length of the programs in instructions [Len] and the number of clock 
cycles required to execute them [#CLK]. Table 2 further details the results on different parts of DLX: 
instruction fetch stage (if), decode stage (dec), execution stage (exe), memory access stage (mem), 
write-back stage (wb) and special registers controller (regs).  

Cross-compiled algorithms are seldom effective to fully validate a design. In fact mul32, a 32-bit 
multiplication performed through shifts and sums, attains the lowest statement coverage. Also specific 
test benches, like set_s, are not able to attain a globally good results, despite a long execution time (e.g., 
exept). For the sake of comparison, 10,000 random programs, each one filling all available RAM were 
generated and the best result is shown in row labeled random. The huge random test bench surpasses all 
previous ones, but, in absolute terms, the attained statement coverage is not excellent (77.12%). 
Noticeably, the all_instr program, carefully designed to exhaustively test all possible instructions, is 
unable to thoroughly verify pipeline stages and attains a statement coverage below 80%. Remarkably, 
the statement coverage attained by the test program generated by our automatic method is nearly 15% 
higher. Obviously, further increase in the attained figure may be prevented by the existence of 
unreachable piece of code in the model. 

The effect of interactions between simultaneously executed instructions can be easily seen in Table 2. 
Executing all instructions is not enough to verify functionalities of the decode stage (dec), since several 
cases are exposed only when specific instructions are executed concurrently. These cases are relatively 
uncommon and are rarely exposed using a random approach. 



5. Conclusions 

This paper presents a methodology able to automatically induce an assembly test program for a 
pipelined microcontroller. The methodology is based on the MicroGP evolutionary algorithm and 
exploits the syntactical description of the assembly language.  

Experimental results clearly show the efficiency of the approach. The proposed methodology is 
completely automatic, since it relies on a syntactical description of the assembly language only and, 
unless commonly adopted methodology, it does not require a skilled programmer or additional analysis 
to be performed by verification engineers. The generated test case is able to efficiently maximize a given 
verification metric, and, at the end of the process, designers are required to manually analyze only those 
parts of the description that the tool failed to validate.  

A prototype of the proposed approach has been developed in ANSI C language, and then it was tested 
on an RT-level implementation of the DLX/pII using statement coverage as verification metric. Induced 
test programs outperformed test cases devised with alternative methodologies.  
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Figure 2: DAG Representation 
 



Program INST CLK SC[%] 
arith_s 47 64 64.56 
carry_su 23 63 65.17 
except 78 108 75.18 
fak 25 72 65.37 
intrpt1 17 217 74.97 
jump1 22 77 66.19 
loadstore_s 129 174 69.25 
loadstore_su 120 174 69.25 
mul_su 15 93 74.67 
set_s 107 144 64.45 
set_su 205 144 64.45 
div32 40 77 64.96 
mul32 24 85 63.94 
system01 199 267 74.36 
all_instr 113 156 79.78 
cumulative 1,164 1,915 80.59 
random 9,190 9,690 77.12 
µGP 812 1,084 94.59 

Table 1: DLX Statement Coverage summary 

 

Program if 
[%] 

dec 
[%] 

exe 
[%] 

mem 
[%] 

wb   
[%] 

regs 
[%] 

arith_s 75.15 56.98 100.00 31.69 100.00 84.09 
carry_su 75.15 58.31 100.00 31.69 100.00 84.09 

except 84.24 68.51 100.00 49.30 100.00 96.59 
fak 75.15 58.76 100.00 31.69 100.00 84.09 

intrpt1 81.21 69.18 100.00 52.11 100.00 92.05 
jump1 75.15 60.75 100.00 31.69 100.00 82.95 

loadstore_s 81.21 58.31 100.00 52.11 100.00 84.09 
loadstore_su 81.21 58.31 100.00 52.11 100.00 84.09 

mul_su 84.24 67.41 100.00 49.30 100.00 96.59 
set_s 75.15 56.76 100.00 31.69 100.00 84.09 

set_su 75.15 56.76 100.00 31.69 100.00 84.09 
div32 75.15 57.87 100.00 31.69 100.00 84.09 
mul32 75.15 55.65 100.00 31.69 100.00 84.09 

system01 84.24 66.74 100.00 49.30 100.00 96.59 
all_instr 84.24 76.50 100.00 55.63 100.00 96.59 

cumulative 87.27 91.57 100.00 59.15 100.00 97.73 
random 87.88 69.84 100.00 49.30 100.00 96.59 
µGP 88.48 96.01 100.00 90.85 100.00 96.59 

Table 2: DLX Statement Coverage breakdown 

 


