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Abstract 

With the advent of new the RT-level design and test 
flows, new tools are needed to migrate at the RT-level 
the activities of fault simulation, testability analysis, 
and test pattern generation. This paper focuses on fault 
simulation at the RT-level, and aims at exploiting the 
capabilities of VHDL simulators to compute faulty re-
sponses. The simulator was implemented as a prototypi-
cal tool, and experimental results show that simulation 
of a faulty circuit is no more costly than simulation of 
the original circuit. The reliability of the fault coverage 
figures computed at the RT-level is increased thanks to 
an analysis of inherent VHDL redundancies, and by 
foreseeing classical synthesis optimizations. A set of 
“rules” is used to compute a fault list that exhibits good 
correlation with stuck-at faults.  

1. Introduction 

One of the hardest theoretical barrier to the diffu-
sion of test-related tools at the RT-level is the lack of 
widely accepted fault models. Several variants of high 
level faults (or testability metrics, as they are sometimes 
called) have been proposed, and their relationships with 
stuck-at faults has been shown, either experimentally or 
theoretically, but such results are generally limited to 
some specific class of circuits (some approaches target 
control-dominated circuits [CSSq00b], other are more 
suited to data-dominated ones [FADe99], or to circuits 
with few interactions with the environment [FiFu00], 
and so on). No single fault model is universally ac-
cepted, since no comprehensive and general results, 
valid for all classes of circuits, are known yet. 

One of the most used fault model is the observability 
enhanced statement coverage metric proposed in 
[DGKe96] and [FDKe98]. This fault model requires 
that all statements in the VHDL description are exe-
cuted at least once, and that their effects are propagated 

to at least one primary output. Propagation is modeled 
implicitly, by determining whether the faulty statement 
may influence the output values but without hypothesiz-
ing any specific faulty value: in some cases, heuristics 
are needed to resolve non-determinism, and the mean-
ingfulness of the resulting fault coverage is affected by 
these approximations. While this approach can be fruit-
fully exploited for test pattern generation [FADe99] 
[CSSq00b], for fault simulation we need more accurate 
results. 

In this paper we thus adopt a particular instantiation 
of the observability enhanced statement coverage met-
ric, and in particular we model single stuck-at bit faults 
on all assignment targets of the executed statements that 
respects an defined set of rules. With this choice, a 
concrete faulty behavior is simulated, and fault propa-
gation can therefore be performed exactly, by comput-
ing the faulty machine evolution. This fault model im-
plies observability enhanced statement coverage, since 
it models one of the possible fault classes on executed 
statements. We also define a series of rules to identify 
redundant faults in the fault list, obtained using the 
proposed fault model, in order to increase the correla-
tion between the RT-level fault coverage and the Gate-
level one. Redundancies identification is based on the 
reduction of the RT-level fault list taking into account 
analyzing the optimizations of the synthesis process, in 
order to eliminate faults corresponding to part of the 
logic optimized away by the synthesizer. 

2. RT-level Fault Model 

Fault models taken from software-testing [Beiz90] 
have three main advantages: they are well known and 
quite standardized; they require little calculations, apart 
from the complete simulation of the fault-free system; 
and they are already embedded in some commercial 
tools. However, while such metrics may be useful to 
validate the correctness of a design [CSSq00], they are 



usually inadequate to foresee the gate-level fault cover-
age with high degree of accuracy. 

In order to improve accuracy, some researchers ex-
tended software-testing metrics to cope with the peculi-
arities of hardware descriptions.  Fallah et al. [FADe99] 
[FDKe98] proposed Observability-Enhanced Statement 
Coverage. They define the concept of tag as the possi-
bility that an incorrect value is computed at a given 
location. Different tags are first injected in any possible 
location and then propagated during the simulation. The 
observability-enhanced statement coverage metric com-
putes the number of tags that reach an observable circuit 
output when the test pattern is applied. 

We adopt observability-enhanced statement coverage 
[CCSS00] and we refine it by using explicit RT-Level 
single-bit stuck-at’s instead of tags. An RT-level single-
bit stuck-at fault is defined as a single-bit stuck-at in the 
effect of an RT-level assignment operation: when a fault 
is present, the affected object (signal or variable target 
of an assignment statement) loads the correct value, 
except for one bit that remains stuck to 0 or 1. 

As in [DGKe96], faults are single and permanent: 
only one fault is inserted at a time and the fault effect is 
present during the whole simulation. The RT-Level 
single-bit stuck-at fault model does not explicitly con-
sider control-flow faults, such as stuck-at-true or stuck-
at-false, as [RiUc96] does.  

Figure 1 shows the example of a stuck-at fault. The 
fault affects the third bit of the assignment operation, 
and modifies the result of the expression, after it has 
been computed and before it is assigned to the target 
signal. The faulty signal is updated as usual, according 
to VHDL propagation rules, but with a faulty value. 
Other assignments of the same signal are assumed to be 
fault-free, since stuck-at faults on the same signal but 
on different statements are considered different. More 

details abount the fault model can be found in 
[CCSS00]. 

During synthesis the RT level VHDL description is 
optimized in order to create an efficient gate-level de-
sign. The optimization process analyzes the VHDL 
description and simplifies all logic eliminating redun-
dancies. In this phase some RT level stuck-at faults lose 
their correspondent Gate level faults. The elimination of 
these Gate level faults generates a discrepancy between 
RT and Gate fault coverage figures. In order to prevent 
this discrepancy is necessary to identify which parts of 
the logic described at the RT-level disappear during the 
optimization phase of the synthesis process and to 
eliminate the associated faults from the fault list. 

The logical elements that are eliminated during op-
timization process are: 

• assignment of constant values to a signal or vari-
able; 

• signals or variables with only few bits actually 
used in the system. 

Another discrepancy is introduced from the different 
approach of the RT-level fault simulation and the Gate 
one. In the Gate level fault simulation the reset signal of 
the system is considered fault-free, so no faults are 
simulated in this part. To prevent the difference between 
the two fault simulation methodology, the RT-level 
faults concerning the VHDL part executed only when 
the reset signal is active must be eliminated. 

Those concepts are formalized by the following set 
of rules. 

2.1. Rule A 

When a constant value is written in a variable or a 
signal, all the logic that was used to accomplish the 
constant part of the operation is reduced to a set of 
wires connected directly to the flip-flop. For this reason 

 

addr <= (tail + reg1) mod 2**8; 

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 1 0 1 1 0 11

 

Figure 1: RT-level Stuck-At Fault Example  



the only faults identifiable at gate level are the ones 
stuck-at with a value different from the constant one. 

In order to identify such useless faults it’s necessary 
to: 

• identify faults concerning variables or signals 
destination of an assignment instruction; 

• determine if all or some of the bits of the second 
term of the instruction are constant, or an opera-
tion with a constant result, and calculate its value; 

• eliminate the faults on the bit whose stuck-at 
value is equal to the constant value at the same 
bit. 

2.2. Rule B 

Sometimes in the VHDL description there are vari-
ables or constants that have only a few bit really useful 
for the system. During the optimization process the size 
of this variables or signals are reduced to the number of 
bit really useful. All the faults concerning the erased 
bits must be eliminated from the fault list. 

In order to identify such useless faults is necessary 
to: 

• determine variables or signals that are only used 
in conditional expressions; 

• determine for any conditional expression if the 
second term is a constant, or an operation be-
tween constants, and calculate its value; 

• calculate the subset of bit values common to the 
various constants; 

• eliminate the faults on the bits whose stuck-at 
value is equal to the subset value at the same bit; 

2.3. Rule C 

At Gate level all the logic connected to the reset sig-
nal is considered fault-free for this reason all the faults 
concerning those instructions must be eliminate from 
the fault list. This hypothesis is needed due to the limi-
tations of VHDL models, that cannot describe the cor-
rect behavior of a circuit if it fails to be correctly initial-
ized (unknown valued don’t propagate correctly across 
conditional statements). To provide a meaningful com-
parison, we do not consider faults in the reset logic, 
either at the RT- or gate- levels. 

In order to identify such useless faults is necessary 
to: 

• determine the part of the VHDL source executa-
ble only when reset signal is active; 

• eliminate faults concerning variables or signals 
destination of an assignment in this part; 

2.4. Examples 

To illustrate some examples of application of the 
above rules, see Tables 1 to 3. The tables report a sam-
ple VHDL statament or fragment, the information about 
faults to be injected (source line, signal or variable 
name, bit position of the fault and stuck-at value), as 
well as the indication whether the application of the rule 
eliminated the fault from the fault list. 

In Tab. 1, the assignment of the constant “000” to 
signal “State” is considered. All stuck-at-0 faults on the 
bits of State, in injected at this instruction, are untesta-
ble since they are not excited. According to Rule A, 
they are excluded from the fault list, while stuck-at-1 
faults will be injected. 

In Tab. 2 a different case is considered, where the 
value of variable “temp” is only used in a greater-than-
zero comparison. In such a situation, only the bit sign of 
the variable is significant, and all faults on lower order 
bits are deleted by Rule B since they are not observable. 
As a matter of fact, synthesis tools are able to detect this 
situation, and do not generate the logic associated to 
lower order bits: we are effectively predicting that some 
RT-level faults have no physical meaning since no gate-
level equivalent will be synthesized. 

Finally, Tab. 3 shows an application of Rule C, 
where all RT-level faults dominated by the reset signal 
are deleted. 

3. Fault Simulation at the RT-level 

In order to verify the feasibility of the proposed fault 
model, we used a prototype implementation of a Fault 
Simulator [CCSS00] that, starting from a VHDL de-
scription at the RT-level, a Fault List of single-bit stuck-
at faults and a Test Pattern, creates a list of detected and 
undetected faults. 

To perform Fault Simulation we use a serial fault 
simulation strategy, and we simulate the good and each 
faulty machine, comparing their outputs. To run the 
simulations, the Test Pattern is first transformed to a set 
of commands that force the correct waveform for input 
signals, and the Fault List is transformed to a set of 
script commands for injecting faults during simulation. 

Fault injection is made possible by creating routines 
that change the target signal/variable bit value during 
simulation, using the simulator scripting language 
(TCL), when a given target assignment instruction is 
executed. The fault injection procedures, presented in  
[CCSS00], must face various issues derived from the 
fault model, from VHDL Semantics and from the simu-
lator itself. 



VHDL instruction eliminated source line name bit stuck-at value 
Yes 29 STATE 0 0 
No 29 STATE 0 1 
Yes 29 STATE 1 0 
No 29 STATE 1 1 
Yes 29 STATE 2 0 

State<=000; 

No 29 STATE 2 1 

Table 1: Rule A application 

VHDL source eliminated source line name bit stuck-at value 
Yes 29 TEMP 0 0 
Yes 29 TEMP 0 1 
Yes 29 TEMP 1 0 
Yes 29 TEMP 1 1 
No 29 TEMP 2 0 

temp= bit_vector(2 downto 0);
…….. 

temp := DATA_IN+REG 
…… 

if (temp >= 0) then 
No 29 TEMP 2 1 

Table 2: Rule B application 

VHDL source eliminated Source line name bit stuck-at value 
yes 32 STATE 0 0 
yes 32 STATE 0 1 
yes 32 STATE 1 0 
yes 32 STATE 1 1 
no 34 STATE 0 0 

 reset='1' then 
      state:=a; 
 elsif  
      state:=b; 
 

no 34 STATE 0 1 

Table 3: Rule C application 

This fault simulation environment allows us to com-
pute fault coverage figures at the RT-level with a mini-
mal CPU time overhead, since the VHDL model of 
faulty circuits is simulated at the same speed as the 
fault-free model. The only time penalty is at fault injec-
tion time instants, where some breakpoints are activated 
and TCL commands to modify values are executed. 

4. Experimental results 

To show the feasibility of the proposed fault model 
we selected a subset of the ITC’99 VHDL benchmarks 
[CSSq00].  

We applied the rules described to the fault lists ex-
tracted for the chosen subset of benchmarks, and fault 

simulated the optimized one with three samples of input 
sequences: 

• a pseudo-random sequence (#1), consisting of 
500 vectors with up to 5 circuit reset commands 

• a test sequence (#2) developed by a simulation-
based gate-level developed ATPG [CPRS96]  

• a test sequence (#3) generated by a state of the art 
commercial topological ATPG working at the 
gate-level. 

Table 4 reports detailed results comparing the RT-
level fault coverage figures obtained with the fault 
model we propose, with gate-level stuck-at fault cover-
age. The table shows that the application of the rules 
improves the predictive value of RT-level fault coverage 
figures. 



A synthetic information is given in Table 5 and rep-
resented graphically in Figure 2. The correlation coeffi-
cient between RT- and gate-level fault coverage figures 
is incredibly low if no rules are applied, thus exposing 
the difficulties of modeling at the RT-level faulty behav-
iors. However, as we apply the rules, we are able to 
reach a correlation coefficient around 77%. Rules A and 
C are more general, and give good results on all bench-
marks. Rule B, on the other hand, contributes signifi-

cantly only for benchmarks that have poorly observable 
assignment statements, such as b04. 

The experimental results show that the application of 
the redundancy identification rules allow the RT level 
fault coverage to become more and more correlated to 
the Gate level one. Circuits have an increment of fault 
coverage and an improvement of the global correlation 
value.  

An exception is the circuit b07, in this case the pres-
ence of a ROM decreases the global correlation. 

 
RT-level Fault Coverage 

circuit sequence 
no rules rule A rules A & B rules A & B & C 

Stuck-at 
Fault Coverage 

#1 54.23% 95.06% 95.06% 97.37% 98.06% 
#2 50.00% 87.65% 87.65% 90.79% 98.45% B01 

#3 52.11% 91.36% 91.36% 93.42% 96.51% 
#1 46.43% 90.70% 90.70% 94.87% 99.33% 
#2 42.86% 83.72% 83.72% 84.62% 99.33% B02 

#3 42.86% 83.72% 83.72% 84.62% 99.33% 
#1 52.94% 67.61% 67.61% 70.49% 73.84% 
#2 50.37% 64.32% 64.32% 66.67% 74.82% B03 

#3 48.53% 61.97% 61.97% 63.93% 74.45% 
#1 47.16% 55.85% 71.59% 84.22% 91.51% 
#2 49.55% 58.69% 75.23% 88.50% 91.51% B04 
#3 49.55% 58.69% 75.23% 88.50% 91.92% 
#1 32.87% 92.73% 92.73% 98.02% 97.35% 
#2 31.94% 90.91% 90.91% 96.04% 97.35% B06 

#3 31.94% 90.91% 90.91% 96.04% 97.35% 
#1 50.00% 66.93% 66.93% 75.71% 58.28% 
#2 49.25% 65.76% 65.76% 74.29% 57.28% B07 

#3 52.00% 66.93% 66.93% 79.52% 58.28% 
#1 45.75% 60.63% 60.63% 81.90% 82.03% 
#2 51.42% 68.13% 68.13% 91.38% 98.15% B08 

#3 54.72% 72.50% 72.50% 98.28% 98.26% 
#1 38.89% 53.41% 53.41% 59.28% 48.89% 
#2 47.66% 65.46% 65.46% 72.85% 90.56% B09 

#3 50.00% 68.67% 68.67% 76.02% 91.22% 
#1 45.36% 69.90% 69.90% 74.43% 77.70% 
#2 51.32% 79.08% 79.08% 84.66% 92.22% B10 

#3 51.66% 79.59% 79.59% 85.23% 92.13% 
#1 56.33% 64.79% 64.79% 73.91% 79.99% 
#2 54.69% 62.91% 62.91% 71.74% 81.00% B11 

#3 62.86% 72.30% 72.30% 82.61% 84.52% 

Table 4: Influence of the rules on fault coverage 



 Correlation coefficient 
Without rules -0.1323 

Rule A 0.6099 
Rule A & B 0.7293 

Rule A & B & C 0.7753 

Table 5: Influence of the rules on correlation 
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Figure 2: Influence of the rules on correlation 

5. Conclusions 

The paper shows an application of RT-level fault 
simulation, this proving that considering testing before 
synthesis is feasible. 

A fault model is proposed and, thank to a careful 
identification of redundancies removed by synthesis, 
and is shown to be highly correlated with Gate-level 
fault coverage. This allows designers to predict circuit 
testability before synthesis. 
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