
An RT-level Fault Model with High Gate Level Correlation

F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
http://www.cad.polito.it/

Abstract

With the advent of new the RT-level design and test
flows, new tools are needed to migrate at the RT-level
the activities of fault simulation, testability analysis,
and test pattern generation. This paper focuses on fault
simulation at the RT-level, and aims at exploiting the
capabilities of VHDL simulators to compute faulty re-
sponses. The simulator was implemented as a prototypi-
cal tool, and experimental results show that simulation
of a faulty circuit is no more costly than simulation of
the original circuit. The reliability of the fault coverage
figures computed at the RT-level is increased thanks to
an analysis of inherent VHDL redundancies, and by
foreseeing classical synthesis optimizations. A set of
“rules” is used to compute a fault list that exhibits good
correlation with stuck-at faults.

1. Introduction

One of the hardest theoretical barrier to the diffu-
sion of test-related tools at the RT-level is the lack of
widely accepted fault models. Several variants of high
level faults (or testability metrics, as they are sometimes
called) have been proposed, and their relationships with
stuck-at faults has been shown, either experimentally or
theoretically, but such results are generally limited to
some specific class of circuits (some approaches target
control-dominated circuits [CSSq00b], other are more
suited to data-dominated ones [FADe99], or to circuits
with few interactions with the environment [FiFu00],
and so on). No single fault model is universally ac-
cepted, since no comprehensive and general results,
valid for all classes of circuits, are known yet.

One of the most used fault model is the observability
enhanced statement coverage metric proposed in
[DGKe96] and [FDKe98]. This fault model requires
that all statements in the VHDL description are exe-
cuted at least once, and that their effects are propagated

to at least one primary output. Propagation is modeled
implicitly, by determining whether the faulty statement
may influence the output values but without hypothesiz-
ing any specific faulty value: in some cases, heuristics
are needed to resolve non-determinism, and the mean-
ingfulness of the resulting fault coverage is affected by
these approximations. While this approach can be fruit-
fully exploited for test pattern generation [FADe99]
[CSSq00b], for fault simulation we need more accurate
results.

In this paper we thus adopt a particular instantiation
of the observability enhanced statement coverage met-
ric, and in particular we model single stuck-at bit faults
on all assignment targets of the executed statements that
respects an defined set of rules. With this choice, a
concrete faulty behavior is simulated, and fault propa-
gation can therefore be performed exactly, by comput-
ing the faulty machine evolution. This fault model im-
plies observability enhanced statement coverage, since
it models one of the possible fault classes on executed
statements. We also define a series of rules to identify
redundant faults in the fault list, obtained using the
proposed fault model, in order to increase the correla-
tion between the RT-level fault coverage and the Gate-
level one. Redundancies identification is based on the
reduction of the RT-level fault list taking into account
analyzing the optimizations of the synthesis process, in
order to eliminate faults corresponding to part of the
logic optimized away by the synthesizer.

2. RT-level Fault Model

Fault models taken from software-testing [Beiz90]
have three main advantages: they are well known and
quite standardized; they require little calculations, apart
from the complete simulation of the fault-free system;
and they are already embedded in some commercial
tools. However, while such metrics may be useful to
validate the correctness of a design [CSSq00], they are

usually inadequate to foresee the gate-level fault cover-
age with high degree of accuracy.

In order to improve accuracy, some researchers ex-
tended software-testing metrics to cope with the peculi-
arities of hardware descriptions. Fallah et al. [FADe99]
[FDKe98] proposed Observability-Enhanced Statement
Coverage. They define the concept of tag as the possi-
bility that an incorrect value is computed at a given
location. Different tags are first injected in any possible
location and then propagated during the simulation. The
observability-enhanced statement coverage metric com-
putes the number of tags that reach an observable circuit
output when the test pattern is applied.

We adopt observability-enhanced statement coverage
[CCSS00] and we refine it by using explicit RT-Level
single-bit stuck-at’s instead of tags. An RT-level single-
bit stuck-at fault is defined as a single-bit stuck-at in the
effect of an RT-level assignment operation: when a fault
is present, the affected object (signal or variable target
of an assignment statement) loads the correct value,
except for one bit that remains stuck to 0 or 1.

As in [DGKe96], faults are single and permanent:
only one fault is inserted at a time and the fault effect is
present during the whole simulation. The RT-Level
single-bit stuck-at fault model does not explicitly con-
sider control-flow faults, such as stuck-at-true or stuck-
at-false, as [RiUc96] does.

Figure 1 shows the example of a stuck-at fault. The
fault affects the third bit of the assignment operation,
and modifies the result of the expression, after it has
been computed and before it is assigned to the target
signal. The faulty signal is updated as usual, according
to VHDL propagation rules, but with a faulty value.
Other assignments of the same signal are assumed to be
fault-free, since stuck-at faults on the same signal but
on different statements are considered different. More

details abount the fault model can be found in
[CCSS00].

During synthesis the RT level VHDL description is
optimized in order to create an efficient gate-level de-
sign. The optimization process analyzes the VHDL
description and simplifies all logic eliminating redun-
dancies. In this phase some RT level stuck-at faults lose
their correspondent Gate level faults. The elimination of
these Gate level faults generates a discrepancy between
RT and Gate fault coverage figures. In order to prevent
this discrepancy is necessary to identify which parts of
the logic described at the RT-level disappear during the
optimization phase of the synthesis process and to
eliminate the associated faults from the fault list.

The logical elements that are eliminated during op-
timization process are:

• assignment of constant values to a signal or vari-
able;

• signals or variables with only few bits actually
used in the system.

Another discrepancy is introduced from the different
approach of the RT-level fault simulation and the Gate
one. In the Gate level fault simulation the reset signal of
the system is considered fault-free, so no faults are
simulated in this part. To prevent the difference between
the two fault simulation methodology, the RT-level
faults concerning the VHDL part executed only when
the reset signal is active must be eliminated.

Those concepts are formalized by the following set
of rules.

2.1. Rule A

When a constant value is written in a variable or a
signal, all the logic that was used to accomplish the
constant part of the operation is reduced to a set of
wires connected directly to the flip-flop. For this reason

addr <= (tail + reg1) mod 2**8;

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 1 0 1 1 0 11

Figure 1: RT-level Stuck-At Fault Example

the only faults identifiable at gate level are the ones
stuck-at with a value different from the constant one.

In order to identify such useless faults it’s necessary
to:

• identify faults concerning variables or signals
destination of an assignment instruction;

• determine if all or some of the bits of the second
term of the instruction are constant, or an opera-
tion with a constant result, and calculate its value;

• eliminate the faults on the bit whose stuck-at
value is equal to the constant value at the same
bit.

2.2. Rule B

Sometimes in the VHDL description there are vari-
ables or constants that have only a few bit really useful
for the system. During the optimization process the size
of this variables or signals are reduced to the number of
bit really useful. All the faults concerning the erased
bits must be eliminated from the fault list.

In order to identify such useless faults is necessary
to:

• determine variables or signals that are only used
in conditional expressions;

• determine for any conditional expression if the
second term is a constant, or an operation be-
tween constants, and calculate its value;

• calculate the subset of bit values common to the
various constants;

• eliminate the faults on the bits whose stuck-at
value is equal to the subset value at the same bit;

2.3. Rule C

At Gate level all the logic connected to the reset sig-
nal is considered fault-free for this reason all the faults
concerning those instructions must be eliminate from
the fault list. This hypothesis is needed due to the limi-
tations of VHDL models, that cannot describe the cor-
rect behavior of a circuit if it fails to be correctly initial-
ized (unknown valued don’t propagate correctly across
conditional statements). To provide a meaningful com-
parison, we do not consider faults in the reset logic,
either at the RT- or gate- levels.

In order to identify such useless faults is necessary
to:

• determine the part of the VHDL source executa-
ble only when reset signal is active;

• eliminate faults concerning variables or signals
destination of an assignment in this part;

2.4. Examples

To illustrate some examples of application of the
above rules, see Tables 1 to 3. The tables report a sam-
ple VHDL statament or fragment, the information about
faults to be injected (source line, signal or variable
name, bit position of the fault and stuck-at value), as
well as the indication whether the application of the rule
eliminated the fault from the fault list.

In Tab. 1, the assignment of the constant “000” to
signal “State” is considered. All stuck-at-0 faults on the
bits of State, in injected at this instruction, are untesta-
ble since they are not excited. According to Rule A,
they are excluded from the fault list, while stuck-at-1
faults will be injected.

In Tab. 2 a different case is considered, where the
value of variable “temp” is only used in a greater-than-
zero comparison. In such a situation, only the bit sign of
the variable is significant, and all faults on lower order
bits are deleted by Rule B since they are not observable.
As a matter of fact, synthesis tools are able to detect this
situation, and do not generate the logic associated to
lower order bits: we are effectively predicting that some
RT-level faults have no physical meaning since no gate-
level equivalent will be synthesized.

Finally, Tab. 3 shows an application of Rule C,
where all RT-level faults dominated by the reset signal
are deleted.

3. Fault Simulation at the RT-level

In order to verify the feasibility of the proposed fault
model, we used a prototype implementation of a Fault
Simulator [CCSS00] that, starting from a VHDL de-
scription at the RT-level, a Fault List of single-bit stuck-
at faults and a Test Pattern, creates a list of detected and
undetected faults.

To perform Fault Simulation we use a serial fault
simulation strategy, and we simulate the good and each
faulty machine, comparing their outputs. To run the
simulations, the Test Pattern is first transformed to a set
of commands that force the correct waveform for input
signals, and the Fault List is transformed to a set of
script commands for injecting faults during simulation.

Fault injection is made possible by creating routines
that change the target signal/variable bit value during
simulation, using the simulator scripting language
(TCL), when a given target assignment instruction is
executed. The fault injection procedures, presented in
[CCSS00], must face various issues derived from the
fault model, from VHDL Semantics and from the simu-
lator itself.

VHDL instruction eliminated source line name bit stuck-at value
Yes 29 STATE 0 0
No 29 STATE 0 1
Yes 29 STATE 1 0
No 29 STATE 1 1
Yes 29 STATE 2 0

State<=000;

No 29 STATE 2 1

Table 1: Rule A application

VHDL source eliminated source line name bit stuck-at value
Yes 29 TEMP 0 0
Yes 29 TEMP 0 1
Yes 29 TEMP 1 0
Yes 29 TEMP 1 1
No 29 TEMP 2 0

temp= bit_vector(2 downto 0);
……..

temp := DATA_IN+REG
……

if (temp >= 0) then
No 29 TEMP 2 1

Table 2: Rule B application

VHDL source eliminated Source line name bit stuck-at value
yes 32 STATE 0 0
yes 32 STATE 0 1
yes 32 STATE 1 0
yes 32 STATE 1 1
no 34 STATE 0 0

 reset='1' then
 state:=a;
 elsif
 state:=b;

no 34 STATE 0 1

Table 3: Rule C application

This fault simulation environment allows us to com-
pute fault coverage figures at the RT-level with a mini-
mal CPU time overhead, since the VHDL model of
faulty circuits is simulated at the same speed as the
fault-free model. The only time penalty is at fault injec-
tion time instants, where some breakpoints are activated
and TCL commands to modify values are executed.

4. Experimental results

To show the feasibility of the proposed fault model
we selected a subset of the ITC’99 VHDL benchmarks
[CSSq00].

We applied the rules described to the fault lists ex-
tracted for the chosen subset of benchmarks, and fault

simulated the optimized one with three samples of input
sequences:

• a pseudo-random sequence (#1), consisting of
500 vectors with up to 5 circuit reset commands

• a test sequence (#2) developed by a simulation-
based gate-level developed ATPG [CPRS96]

• a test sequence (#3) generated by a state of the art
commercial topological ATPG working at the
gate-level.

Table 4 reports detailed results comparing the RT-
level fault coverage figures obtained with the fault
model we propose, with gate-level stuck-at fault cover-
age. The table shows that the application of the rules
improves the predictive value of RT-level fault coverage
figures.

A synthetic information is given in Table 5 and rep-
resented graphically in Figure 2. The correlation coeffi-
cient between RT- and gate-level fault coverage figures
is incredibly low if no rules are applied, thus exposing
the difficulties of modeling at the RT-level faulty behav-
iors. However, as we apply the rules, we are able to
reach a correlation coefficient around 77%. Rules A and
C are more general, and give good results on all bench-
marks. Rule B, on the other hand, contributes signifi-

cantly only for benchmarks that have poorly observable
assignment statements, such as b04.

The experimental results show that the application of
the redundancy identification rules allow the RT level
fault coverage to become more and more correlated to
the Gate level one. Circuits have an increment of fault
coverage and an improvement of the global correlation
value.

An exception is the circuit b07, in this case the pres-
ence of a ROM decreases the global correlation.

RT-level Fault Coverage

circuit sequence
no rules rule A rules A & B rules A & B & C

Stuck-at
Fault Coverage

#1 54.23% 95.06% 95.06% 97.37% 98.06%
#2 50.00% 87.65% 87.65% 90.79% 98.45% B01

#3 52.11% 91.36% 91.36% 93.42% 96.51%
#1 46.43% 90.70% 90.70% 94.87% 99.33%
#2 42.86% 83.72% 83.72% 84.62% 99.33% B02

#3 42.86% 83.72% 83.72% 84.62% 99.33%
#1 52.94% 67.61% 67.61% 70.49% 73.84%
#2 50.37% 64.32% 64.32% 66.67% 74.82% B03

#3 48.53% 61.97% 61.97% 63.93% 74.45%
#1 47.16% 55.85% 71.59% 84.22% 91.51%
#2 49.55% 58.69% 75.23% 88.50% 91.51% B04
#3 49.55% 58.69% 75.23% 88.50% 91.92%
#1 32.87% 92.73% 92.73% 98.02% 97.35%
#2 31.94% 90.91% 90.91% 96.04% 97.35% B06

#3 31.94% 90.91% 90.91% 96.04% 97.35%
#1 50.00% 66.93% 66.93% 75.71% 58.28%
#2 49.25% 65.76% 65.76% 74.29% 57.28% B07

#3 52.00% 66.93% 66.93% 79.52% 58.28%
#1 45.75% 60.63% 60.63% 81.90% 82.03%
#2 51.42% 68.13% 68.13% 91.38% 98.15% B08

#3 54.72% 72.50% 72.50% 98.28% 98.26%
#1 38.89% 53.41% 53.41% 59.28% 48.89%
#2 47.66% 65.46% 65.46% 72.85% 90.56% B09

#3 50.00% 68.67% 68.67% 76.02% 91.22%
#1 45.36% 69.90% 69.90% 74.43% 77.70%
#2 51.32% 79.08% 79.08% 84.66% 92.22% B10

#3 51.66% 79.59% 79.59% 85.23% 92.13%
#1 56.33% 64.79% 64.79% 73.91% 79.99%
#2 54.69% 62.91% 62.91% 71.74% 81.00% B11

#3 62.86% 72.30% 72.30% 82.61% 84.52%

Table 4: Influence of the rules on fault coverage

 Correlation coefficient
Without rules -0.1323

Rule A 0.6099
Rule A & B 0.7293

Rule A & B & C 0.7753

Table 5: Influence of the rules on correlation

without rules

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

RT

G
at

e

Rule A & B & C

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

RT

G
at

e

Figure 2: Influence of the rules on correlation

5. Conclusions

The paper shows an application of RT-level fault
simulation, this proving that considering testing before
synthesis is feasible.

A fault model is proposed and, thank to a careful
identification of redundancies removed by synthesis,
and is shown to be highly correlated with Gate-level
fault coverage. This allows designers to predict circuit
testability before synthesis.

6. References

[Beiz90] B. Beizer, Software Testing Techniques (2nd ed.),
Van Nostrand Rheinold, New York, 1990

[CCSS00] F. Corno, G. Cumani, M. Sonza Reorda, G.
Squillero, RT-level Fault Simulation Techniques
based on Simulation Command Scripts, "DCIS
2000: XV Conference on Design of Circuits and
Integrated Systems", Le Corum, Montpellier,
November 21-24, 2000

[CPRS96] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza
Reorda, GATTO: a Genetic Algorithm for Auto-
matic Test Pattern Generation for Large Syn-
chronous Sequential Circuits, "IEEE Transac-
tions on Computer-Aided Design", August 1996,
Vol. 15, No. 8, pp. 943-951

[CSSq00] F. Corno, M. Sonza Reorda, G. Squillero, Ex-
ploiting ITC’99 benchmarks for developing an

RT-level ATPG tool, to appear on IEEE Design &
Test, Special issue on Benchmarking for Design
and Test, June 2000

[CSSq00b] F. Corno, M. Sonza Reorda, G. Squillero, High-
Level Observability for Effective High-Level
ATPG, VTS-2000: 18th IEEE VLSI Test Sympo-
sium, May 2000

[DGKe96] S. Devadas, A. Ghosh, K. Keutzer, “An Ob-
servability-Based Code Coverage Metric for
Functional Simulation,” Proceedings IEEE/ACM
International Conference on Computer Aided De-
sign, 1996

[FADe99] F. Fallah, P. Ashar, S. Devadas, “Simulation
Vector Generation from HDL Descriptions for
Observability-Enhanced Statement Coverage,”
Proceedings 35th Design Automation Conference,
1999, pp. 666-671

[FDKe98] F. Fallah, S. Devadas, K. Keutzer, “OCCOM:
Efficient Computation of Observability-Based
Code Coverage Metrics for Functional Verifica-
tion,” Proceedings 34th Design Automation Con-
ference, 1998

[FiFu00] A. Fin, F. Fummi, “A VHDL Error Simulator for
Functional Test Generation,” Proceedings of the
Design, Automation and Test Conference, 2000,
pp. 390-395

[RiUc96] T. Riesgo, J. Uceda, “A Fault Model for VHDL
Descriptions at the Register Transfer Level,”
Proceedings of EURO-DAC/EURO-VHDL, 1996

