
Fully Automatic Test Program Generation
for Microprocessor Cores

Abstract

Microprocessor cores are a major challenge in the
test arena: not only is their complexity always
increasing, but also their specific characteristics
intensify all difficulties. A microprocessor embedded
inside a SOC is even harder to test since its input might
be harder to control and its behavior may be harder to
observe. Functional testing, an effective solution,
consists in forcing the microprocessor to execute a
suitable test program. This paper presents a new
approach to automatic test program generation, which
overcomes the main limitations of previous
methodologies and provides significantly better results.
Human intervention is limited to the enumeration of all
assembly instructions with their possible operands. Also
internal parameters of the optimizer are auto-adapted.
Experimental results show the effectiveness of the
approach.

1 Introduction

Developments in semiconductor technology have
made possible to design an entire system onto a single
chip, the so-called System-on-a-Chip (SOC). A
connected practice is the usage of predefined logic
blocks known as cores or, sometimes, macros. A core is
a highly complex logic block. It is predictable, reusable,
and fully defined in terms of its behavior. System
designers can purchase cores from core-vendors and
integrate them with their own user-defined logic to
implement SOCs more efficiently. Core based SOCs
have significant advantages: core exploitation reduces
the number of required discrete components, minimizing
the total size and cost of the end-product; furthermore, it
greatly reduces time-to-market because of the involved
design re-use.

Microprocessor cores represent an important and
widespread class of macros, and they are a major
challenge in the test arena. Not only is their complexity
always increasing, but also their specific characteristics
intensify all existing difficulties. A microprocessor
embedded inside a SOC is harder to test since it might be
harder to control and its behavior may be harder to
observe. And design-for-testability (DFT) structures
might be harder to insert, too.

Regarding microprocessors, test has traditionally
been performed resorting to functional approaches based
on exciting functions and resources. The canonical one is
described in [ThAb80]; however, this methodology
involves a high amount of manual work performed by
skilled programmers, and does not provide any
quantitative measure about the attained gate-level fault
coverage.

 [ShAb98] proposes a methodology to synthesize a
self-test program for stuck-at faults. The approach
generates a sequence of instructions that enumerates all
the combination of the operations and systematically
selects operands. However, users need to determine the
heuristics to assign values to instruction operands to
achieve high stuck-at fault coverage. In some cases, this
might not be a trivial task.

[ChDe00] proposes DEFUSE, a deterministic method
to generate test programs able to reach good fault
coverage on the ALU of a microprocessor, and to
compact the result. The approach is very effective with
combinationally testable parts (i.e., ALUs), but shows
some limitation when hard-to-test sequential modules
(e.g., control units) are addressed. On the other hand,
[BaPa99] is based on generating random sequences of
instructions. It is able to attain a fairly high level of fault
coverage, however it assumes that all instructions are
single-cycle and buses are never floating. Both
approaches require the insertion of BIST circuitry.

 On a microprocessor core, however, test solutions
requiring massive chip-level changes might not be
exploitable. In particular, any solution based on a scan
approach may be inapplicable. First of all, the insertion
of SOC-level test architectures for allowing external
access to the scan chains might be unpractical or
incompatible with other DFT structures. Furthermore,
system designers may dislike scan methodologies since
they do not allow at-speed tests and they could degrade
performance.

Any test solution requiring the application of binary
values directly to the microprocessor pins may
potentially cause problems to SOC designers. The ideal
strategy should consist in a mere assembly program and
not rely on any special test point to force values or
observe behaviors. Such test program could be loaded in
RAM (e.g., resorting to DMA or other mechanisms), and
executed to test the core. A minimum effort could be
needed to extract test result.

The requirements for such a test solution are
analogous to the ones described in [PMNo99] and
[CSSV01]: a RAM memory of sufficient size should be
available on the SOC and easily accessible from the
external. In this way, an ATE can load into the memory
the test program when required, and the processor core
can execute it. Test execution is always performed at-
speed, independently on the speed of the mechanisms
used for loading the RAM and checking results.

Regarding test program generation, [BiMa95]
proposes interesting techniques for efficient compilation
of self-test programs. But they left the responsibility for
generating the self-test programs to the test engineers.

Tackling verification, [AABH99] proposed a
technique where the processor itself generates test at run-
time by self-modifying code. Similarly, [UBSh99]
showed a method for generating instruction sequences
for validating the branch prediction mechanism of the
PowerPC604. Generated sequences are very effective,
but methodologies exploit a deep knowledge of the
target processors and cannot be easily applied on general
designs.

[CSSV01] proposes a semi-automated approach to
test program generation based on a library of macros
those parameters are chosen by a genetic algorithm. The
approach is shown able to attain reasonable fault
coverage (85%) on a common microprocessor core and
requires no additional hardware or scan structures.
However, test generation relies on a library carefully
compiled by experts.

[KPGZ02] describes a methodology that allows
devising an effective test program for a microprocessor
core. However, the method requires that test engineers
create deterministic test patterns to excite the entire set
of operations performed by each component of the core.

Other possible approaches include the cross-
compilation of available high-level routines. However,
despite the effortlessness, this is not a good solution.
Due to the intrinsic nature of the algorithms and of
compiler strategies, these programs are seldom able to
excite all functionalities and do not take into account
observability.

Although more effective and easier to generate, also
random programs neglect observability and will hardly
detect hard-to-test faults. Moreover, their exploitation
could require huge memory space and overlong test
times.

This paper presents a new approach to test program
generation overcoming the main limitations of previous
approaches and providing significantly better results.
The method exploits evolutionary techniques to
automatically induce a very effective test program.
Assembly programs are internally represented as
directed acyclic graphs and evolved to maximize the
attained fault coverage. Concurrently, internal

parameters are adapted to their optimal values. Human
intervention is limited to the enumeration of all available
instructions and their possible operands.

Experiments gathered exploiting a prototypical tool
on the i8051 microprocessor show that, despite the much
lower human intervention, the method is able to
overcome the results of [CSSV01] in term of attained
fault coverage.

The paper is organized as follows. Section 2 details
test-program generation and adopted evolutionary
techniques. Section 3 reports the experimental
evaluation, while Section 3 draws some conclusions

2 Test-Program Generation

This paper proposes an automatic methodology for
generating a test program able to attain high fault
coverage figures. Indeed, creating in an automated way
programs able to solve problems is a fascinating task and
has always been one of the more desired goals of
computer science.

generator

test
program

instruction
library

netlist

fault
simulatorgenerator

test
program

instruction
library

netlist

fault
simulator

Figure 1: System Architecture

The overall architecture of the proposed approach is
shown in Figure 1. The generator induces test programs
exploiting an external instruction library that describes
the syntax of the microprocessor assembly language. The
generator utilizes a fault simulator to evaluate the
generated test programs and to gathered relevant
information for driving the optimization process.

Next Sections detail the approach.

2.1 Representation

Test program generation exploits MicroGP, an
approach for inducing assembly programs able to reach a
specific goal. MicroGP was theoretically developed in
[CCSS02a]. It utilizes a directed acyclic graph (DAG)
for representing the flow of a program, and an
instruction library for describing the assembly syntax.
The loose coupling between these two elements enables

exploiting the approach with different instruction sets,
formalisms and conventions.

ADD
ADDC
AJMP
ANL
CJNE
CLR
CPL
DA
DEC
DIV
DJNZ
INC
JB
JBC
JC
JMP
JNB
JNC
JNZ
JZ
LJMP
MOV
MOVC
MOVX
MUL
NOP
ORL
POP
PUSH
RL
RLC
RR
RRC
SETB
SJMP
SUBB
…

Instruction library

A

B

C

D

E

F

H

Prologue

Epilogue

ADD
ADDC
AJMP
ANL
CJNE
CLR
CPL
DA
DEC
DIV
DJNZ
INC
JB
JBC
JC
JMP
JNB
JNC
JNZ
JZ
LJMP
MOV
MOVC
MOVX
MUL
NOP
ORL
POP
PUSH
RL
RLC
RR
RRC
SETB
SJMP
SUBB
…

Instruction library

A

B

C

D

E

F

H

Prologue

Epilogue

Figure 2: DAG and Instruction library

Each node of the DAG (Figure 2) contains a pointer
inside the instruction library and, when needed, its
parameters (i.e., immediate values or register
specifications). For instance, Figure 3 shows a sequential
node that will be translated into an “ORL A, R1”, i.e., a
bit-wise OR between accumulator and register R1.
DAGs are built with four kinds of nodes:

ORL A, reg
ORL C, /num
ORL C, !num

ORL A, #num
ORL num, reg

PARAMETERS

Previous
Node

Next
Node

reg = R1

ORL A, R1

Instruction
library

ORL A, reg
ORL C, /num
ORL C, !num

ORL A, #num
ORL num, reg

PARAMETERS

Previous
Node

Next
Node

reg = R1

ORL A, R1

Instruction
library

Figure 3: A sequential instruction

• Prologue and epilogue nodes are always present and
represent required operations, such as initializations.
They depend both on the processor and on the
operating environment, and they may be empty. The
prologue has no parent node, while the epilogue has

no children. These nodes may never be removed
from the program, nor changed.

• Sequential-instruction nodes represent common
operations, such as arithmetic or logic ones (e.g.,
node B). They have out-degree 1 and the number of
parameters changes from instruction to instruction.
Unconditional branches are considered sequential,
since execution flow does not split (e.g., node D).

• Conditional-branch nodes are translated to
assembly-level conditional-branch instructions (e.g.,
node A). All conditional branches implemented in
the target assembly languages must be included in
the library.

2.2 Program Induction

Test programs are induced by modifying DAG
topology and by mutating parameters inside DAG nodes.
Both kinds of modifications are embedded in an
evolutionary algorithm implementing a (µ+λ) strategy.

In more details, a population of µ individuals is
cultivated, each individual representing a test program.
In each step, an offspring of λ new individuals are
generated. Parents are selected using tournament
selection with tournament size τ (i.e., τ individuals are
randomly selected and the best is picked). Each new
individual is generated by applying one or more genetic
operators. The cumulative probability of applying at
least n consecutive operators is equal to n

cp .

After creating new λ individuals, the best µ programs
in the population of (µ+λ) are selected for surviving.

The initial population is generated creating µ empty
programs (only prologue and epilogue) and then
applying im consecutive random mutations to each.

The evolution process iterates until the population
reaches a steady state condition, i.e., no improvements
are recorded for Sg generations.

Three mutation and one crossover operators are
implemented and activated with probability padd, pdel,
pmod and pxover respectively.
• Add node: a new node is inserted into the DAG in a

random position. The new node can be either a
sequential instruction or a conditional branch. In both
cases, the instruction referred by the node is
randomly chosen. If the inserted node is a branch,
either unconditional or conditional, one of the
subsequent nodes is randomly chosen as the
destination. Remarkably, when an unconditional
branch is inserted, some nodes in the DAG may
become unreachable (e.g., node E in Figure 2).

• Remove node: an existing internal node (except
prologue or epilogue) is removed from the DAG. If
the removed node was the target of one or more
branch, parents’ edges are updated.

• Modify node: all parameters of an existing internal
node are randomly changed.

• Crossover: two different programs are mated to
generate a new one. First, parents are analyzed to
detect potential cutting points, i.e., vertices in the
DAG that if removed create disjoint sub-graphs (e.g.,
node C in Figure 2). Then a standard 1-point
crossover is exploited to generate the offspring.

2.3 Program Evaluation

Test program evaluation associates a fitness value to
each test program. Biological fitness measures the
capacity of an organism to survive and transmit its
genotype to reproductive offspring as compared to
competing organisms. For the purpose of this paper, the
fitness of a test program measures its efficacy (attained
fault coverage) and its potential (ability to excite new
faults).

Fitness values are used to probabilistically select the
λ parents for generating new offspring and to
deterministically select the best µ individuals surviving
at the end of each evolution step.

After translating the DAG into a syntactically correct
assembly program, the execution of the test case is fault
simulated. Three values are gathered: the number of
excited faults (Na); the number of faults that modified at
least a memory element (Nm); the number of detected
faults (Nd). Let Ntot be the total number of faults, the
fitness is calculated as: 2()a tot m tot df N N N N N= + ⋅ + ⋅ .

Faults are marked detected coherently with the test
solution adopted, e.g., a signature into a specified
memory position available to the ATE through DMA, a
linear feedback shift register (LFSR) monitoring buses, a
response analyzer connected to microprocessor outputs,
or other architectures.

2.4 Auto Adaptation

The proposed approach is able to internally tune both
the number of consecutive random mutations and the
activation probabilities of all operators. Modifying these
parameters, the algorithm is able to shape the search
process, significantly improving its performances.

The number of consecutive random mutations is
controlled by parameter pc, which, intuitively, molds the
mutation strength in the optimization process. Generally,
in the beginning it is better to adopt a high value,
allowing offspring to strongly differ from parents. On
the other hand, toward the end of the search process, it is
preferable to reduce diversity around the local optimum,
allowing small mutations only. Initially, the maximum
value is adopted (pc = 0.9). Then, the MicroGP monitors
improvements: let IH be the number of newly created

individuals attaining a fitness value higher than their
parents over the last H generations. At the end of each
generation, the new pc value is calculated

as (1)new H
c c

Ip p
H

α α
λ

= ⋅ + − ⋅
⋅

. Then pc is saturated to

0.9. The coefficient α introduces inertia to unexpected
abrupt changes.

Regarding activation probabilities, initially they are
set to the same value padd = pdel = pmod = pxover = 0.25.
During evolution, probability values are updated
similarly to mutation strength: let O1

OP be the number of
successful invocation of genetic operator OP in the last
generation, i.e., the number of invocations of OP where
the resulting individual attained a fitness value higher
than its parents; and let O1 be the total number of
operators invoked in the last generation. At the end of
each generation, the new values are calculated as

1

1

(1)
OP

new
OP OP

Op p
O

α α= ⋅ + − ⋅ . Since it is possible that

pc > 0, O1 may be significantly larger than λ. Activation
probabilities are forced to avoid values below .01 and
over 0.9, then normalized to padd + pdel + pmod + pxover = 1.
If O1 = 0, then all activation probabilities are pushed
towards initial values.

3 Experimental Results

A prototype of the proposed test program generator
was implemented in about 3,000 lines of C code. For
evaluating test programs an in-house developed fault-
parallel event-driven fault simulator is used.

The methodology was tested on an i8051 core.
Despite its relatively old age, the i8051 is one of the
most popular 8-bit micros in use today. Its memory
architecture includes 128 bytes of internal data memory
that are accessible directly by its instructions. A 32-byte
segment of this 128-byte memory block is bit
addressable by a subset of the i8051 instructions, namely
the bit-instructions.

The i8051 instructions range from 0-operand ones,
like “DIV AB” (divide accumulator A by B) where all
operands are implicit, to 3-operand ones, like
“CJNE Op1, Op2, RelAddr” (compare Op1 with Op2
and jump if they are not equal). The i8051 allows 5
different addressing types: immediate, direct, indirect,
external direct and code indirect. As in many CISC,
registers are not orthogonal to the instructions and
addressing modes.

The instruction library for the i8051 consists in 81
entries: prologue, epilogue, 66 sequential operations and
13 conditional branches. Listing instructions with their
syntax is a trivial task. On the contrary in [CSSV01]
preparing the 213 macros required two working days of
an experienced engineer.

The methodology was tested on a gate-level
implementation consisting in about 12K gates connected
to a program memory of 4 Kbytes and a data memory of
2 Kbytes. The complete fault list consists of 28,792
permanent single-bit stack-at faults. A response analyzer
was assumed connected to microprocessor output ports
and the signature available to the ATE. The test program
generator inserts the consequent observability
instructions each time a DAG is mapped to an assembly
program.

Evaluation has been performed on a Sun Enterprise
250 running at 400 MHz and equipped with 2 Gbytes of
RAM. The full generation of the test program required
few days, a time comparable with [CSSV01].

Table 1 shows the parameters of the test program
generator. They are all standard values and do not
require special care. Mutation strength pc and activation
probabilities (padd, pdel, pmod and pxover), on the other hand,
require careful tuning and are automatically chosen by
the algorithm.

PAR MEANINGS VALUE

µ Population size 5
λ Offspring size 10
τ Tournament size 2
im Initial mutations 100
H History for auto-adaption 4
α Auto-Adaption inertia 0.4
Sg Steady state 500

Table 1: Test Program Generator Parameters

In order to assess the effectiveness of the approach,
the induced test program is compared with a set of
selected test programs. Table 2 reports the attained fault
coverage.

Fibonacci and int2bin are two cross-compiled
algorithms. The former calculates the Fibonacci series,
while the latter converts an integer to a binary
representation. Plausibly, the attained fault coverage is
quite low: both are only able to detect 36.04% of the
faults.

Approach FC [%]
Fibonacci 36.04
int2bin 36.04
TestAll 36.35
Random 62.93
Random Macro 80.19
ATPGS 85.19
MicroGP 90.77

Table 2: Experimental Results

TestAll is an exhaustive functional test program
devised by the microprocessor designer, it is relatively
long and includes several loops. It tests all possible
instructions; however, since it disregards observability,
the fault coverage attained is only slightly superior to
former approaches.

Random is the best result attained simulating
randomly-generated test programs without evolutionary
mechanisms (i.e., selection, mating, survival of the fittest
and auto adaptation). For a fair comparison, the same
number of programs evaluated by the MicroGP during
the generation phase was simulated.

Random Macro corresponds to the results achieved
by randomly selecting a sequence of macros created
according to [CSSV01]. Results are considerably better
than for purely random approach since macros were
carefully devised by experts and include sharp
mechanisms to make the results observable.

ATPGS reports the result of [CSSV01] where macros
and a limited number of evolutionary techniques are
exploited. In the approach, a genetic algorithm is given
the goal to optimize parameters of heuristically selected
macros. Program structures are not evolved, but
determined by internal macro code.

MicroGP outperforms all former approaches,
reaching a fault coverage of 90.77%. The compilation of
the instruction library is a trivial task compared to
[CSSV01] and the improvements stems from the
enhanced evolutionary mechanisms and the sharper
fitness.

A deeper analysis of the fault list enabled identifying
a set of combinationally untestable faults in the control
unit. Pruning these faults, the fault coverage attained by
the MicroGP reaches 94.59%.

4 Conclusions

Software BIST methodologies present several
advantages over scan-based ones, they do not require
high-cost ATE equipment, and they allow an at-speed
test of the processor core. Furthermore on a
microprocessor core the insertion of test architectures
may be unpractical or incompatible with other SOC-
level DFT structures.

In this paper we presented a new approach for
devising test programs for a microprocessor core. The
methodology exploits innovative evolutionary
techniques to direct the search process.

The test program generator utilizes a directed acyclic
graph for representing the flow of an assembly program,
and an instruction library for describing the assembly
syntax. The loose coupling between these two elements
enables exploiting the approach with different instruction
sets, formalisms and conventions.

Moreover, concurrently to test program generation,
the evolutionary core adapts its internal parameters,
reducing even more the required user effort.

Experiments gathered on the i8051 microprocessor
exploiting a prototypical tool show that the proposed
approach is able to reach higher fault coverage with
fewer limitations than alternative approaches.

In contrast to other methodologies, human
intervention is limited to the enumeration of all available
instructions and their possible operands. Indeed, the
experimented test program generation task required an
instruction library of 81 entries, while in [CSSV01], for
the same processor, an experienced engineer needs two
working days to prepare the set of 213 macros.

Furthermore, the ability to generate assembly level
programs for a generic microprocessor may be exploited
for different purposes. In [CCSS02b], a similar approach
was used against a register-level VHDL description for
optimizing code coverage metrics.

Current work is targeted to apply the proposed
approach to more complex processors, with enhanced
features such as caches and pipelines. The first results
are already available on a DLX/pII [PaHe96], an
academic microprocessor implementing a 5-stage
pipeline, and a SPARC V8 [SPARC].

5 References

[AABH99] J. Shen, J. Abraham, D. Baker, T. Hurson, M.
Kinkade, “Functional verification of the Equator
MAP1000 microprocessor”, 36th Design
Automation Conference, 1999, pp. 169 -174

[BaPa99] K. Batcher, C. Papachristou, “Instruction
Randomization Self Test For Processor Cores”,
IEEE VLSI Test Symposium, 1999, pp. 34-40

[BiMa95] U. Bieker and P. Marwedel, “Retargetable self-test
program generation using constraint logic
programming,” 32nd Design Automation
Conference, 1995, pp. 605 – 611

[CCSS02a] F. Corno, G. Cumani, M. Sonza Reorda, G.
Squillero, “Efficient Machine-Code Test-Program
Induction”, Congress on Evolutionary
Computation, 2002, pp. 1486-1491

[CCSS02b] F. Corno, G. Cumani, M. Sonza Reorda, G.
Squillero, “Evolutionary Test Program Induction
for Microprocessor Design Verification”, to appear
in: 11th Asian Test Symposium, 2002

[ChDe00] L. Chen, S. Dey, “DEFUSE: A Deterministic
Functional Self-Test Methodology for Processors”,
IEEE VLSI Test Symposium, 2000, pp. 255-262

[CSSV01] F. Corno, M. Sonza Reorda, G. Squillero, M.
Violante, “On the Test of Microprocessor IP
Cores”, IEEE Design, Automation & Test in
Europe, 2001, pp. 209-213

[Koza98] J. R. Koza, “Genetic programming”, Encyclopedia
of Computer Science and Technology, vol. 39,
Marcel-Dekker, 1998, pp. 29-43

[KPGZ02] N. Kranitis, A. Paschalis, D. Gizopoulos, Y.
Zorian, “Effective software self-test methodology
for processor cores”, IEEE Design, Automation &
Test in Europe, 2002, pp. 592-597

[PaHe96] D. A. Patterson and J. L. Hennessy, Computer
Architecture - A Quantitative Approach, (second
edition), Morgan Kaufmann, 1996

[PMNo99] C.A. Papachristou, F. Martin, M. Nourani,
“Microprocessor Based Testing for Core-Based
System on Chip”,ACM/IEEE Design Automation
Conference, 1999, pp. 586-591

[ShAb98] J. Shen and J.A. Abraham, “Native Mode
Functional Test Generation for Processors with
Applications to Self Test and Design Validation”,
International Test Conference, 1998, pp. 990-999

[SPARC] SPARC International, The SPARC Architecture
Manual

[ThAb80] S. Thatte, J. Abraham, “Test Generation for
Microprocessors”, IEEE Transactions on
Computers, Vol. C-29, June 1980, pp. 429-441

[UBSh99] N. Utamaphethai, R.D. Blanton and J.P. Shen,
“Superscalar Processor Validation at the
Microarchitecture Level”, 12th IEEE International
Conference on VLSI Design, 1999, pp. 300-305

