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Abstract 

Microprocessor cores are a major challenge in the 
test arena: not only is their complexity always 
increasing, but also their specific characteristics 
intensify all difficulties. A microprocessor embedded 
inside a SOC is even harder to test since its input might 
be harder to control and its behavior may be harder to 
observe. Functional testing, an effective solution, 
consists in forcing the microprocessor to execute a 
suitable test program. This paper presents a new 
approach to automatic test program generation, which 
overcomes the main limitations of previous 
methodologies and provides significantly better results. 
Human intervention is limited to the enumeration of all 
assembly instructions with their possible operands. Also 
internal parameters of the optimizer are auto-adapted. 
Experimental results show the effectiveness of the 
approach. 

1 Introduction 

Developments in semiconductor technology have 
made possible to design an entire system onto a single 
chip, the so-called System-on-a-Chip (SOC). A 
connected practice is the usage of predefined logic 
blocks known as cores or, sometimes, macros. A core is 
a highly complex logic block. It is predictable, reusable, 
and fully defined in terms of its behavior. System 
designers can purchase cores from core-vendors and 
integrate them with their own user-defined logic to 
implement SOCs more efficiently. Core based SOCs 
have significant advantages: core exploitation reduces 
the number of required discrete components, minimizing 
the total size and cost of the end-product; furthermore, it 
greatly reduces time-to-market because of the involved 
design re-use. 

Microprocessor cores represent an important and 
widespread class of macros, and they are a major 
challenge in the test arena. Not only is their complexity 
always increasing, but also their specific characteristics 
intensify all existing difficulties. A microprocessor 
embedded inside a SOC is harder to test since it might be 
harder to control and its behavior may be harder to 
observe. And design-for-testability (DFT) structures 
might be harder to insert, too. 

Regarding microprocessors, test has traditionally 
been performed resorting to functional approaches based 
on exciting functions and resources. The canonical one is 
described in [ThAb80]; however, this methodology 
involves a high amount of manual work performed by 
skilled programmers, and does not provide any 
quantitative measure about the attained gate-level fault 
coverage. 

 [ShAb98] proposes a methodology to synthesize a 
self-test program for stuck-at faults. The approach 
generates a sequence of instructions that enumerates all 
the combination of the operations and systematically 
selects operands. However, users need to determine the 
heuristics to assign values to instruction operands to 
achieve high stuck-at fault coverage. In some cases, this 
might not be a trivial task.  

[ChDe00] proposes DEFUSE, a deterministic method 
to generate test programs able to reach good fault 
coverage on the ALU of a microprocessor, and to 
compact the result. The approach is very effective with 
combinationally testable parts (i.e., ALUs), but shows 
some limitation when hard-to-test sequential modules 
(e.g., control units) are addressed. On the other hand, 
[BaPa99] is based on generating random sequences of 
instructions. It is able to attain a fairly high level of fault 
coverage, however it assumes that all instructions are 
single-cycle and buses are never floating. Both 
approaches require the insertion of BIST circuitry. 

 On a microprocessor core, however, test solutions 
requiring massive chip-level changes might not be 
exploitable. In particular, any solution based on a scan 
approach may be inapplicable. First of all, the insertion 
of SOC-level test architectures for allowing external 
access to the scan chains might be unpractical or 
incompatible with other DFT structures. Furthermore, 
system designers may dislike scan methodologies since 
they do not allow at-speed tests and they could degrade 
performance. 

Any test solution requiring the application of binary 
values directly to the microprocessor pins may 
potentially cause problems to SOC designers. The ideal 
strategy should consist in a mere assembly program and 
not rely on any special test point to force values or 
observe behaviors. Such test program could be loaded in 
RAM (e.g., resorting to DMA or other mechanisms), and 
executed to test the core. A minimum effort could be 
needed to extract test result. 



The requirements for such a test solution are 
analogous to the ones described in [PMNo99] and 
[CSSV01]: a RAM memory of sufficient size should be 
available on the SOC and easily accessible from the 
external. In this way, an ATE can load into the memory 
the test program when required, and the processor core 
can execute it. Test execution is always performed at-
speed, independently on the speed of the mechanisms 
used for loading the RAM and checking results.  

Regarding test program generation, [BiMa95] 
proposes interesting techniques for efficient compilation 
of self-test programs. But they left the responsibility for 
generating the self-test programs to the test engineers. 

Tackling verification, [AABH99] proposed a 
technique where the processor itself generates test at run-
time by self-modifying code. Similarly, [UBSh99] 
showed a method for generating instruction sequences 
for validating the branch prediction mechanism of the 
PowerPC604. Generated sequences are very effective, 
but methodologies exploit a deep knowledge of the 
target processors and cannot be easily applied on general 
designs. 

[CSSV01] proposes a semi-automated approach to 
test program generation based on a library of macros 
those parameters are chosen by a genetic algorithm. The 
approach is shown able to attain reasonable fault 
coverage (85%) on a common microprocessor core and 
requires no additional hardware or scan structures. 
However, test generation relies on a library carefully 
compiled by experts.  

[KPGZ02] describes a methodology that allows 
devising an effective test program for a microprocessor 
core. However, the method requires that test engineers 
create deterministic test patterns to excite the entire set 
of operations performed by each component of the core.  

Other possible approaches include the cross-
compilation of available high-level routines. However, 
despite the effortlessness, this is not a good solution. 
Due to the intrinsic nature of the algorithms and of 
compiler strategies, these programs are seldom able to 
excite all functionalities and do not take into account 
observability. 

Although more effective and easier to generate, also 
random programs neglect observability and will hardly 
detect hard-to-test faults. Moreover, their exploitation 
could require huge memory space and overlong test 
times. 

This paper presents a new approach to test program 
generation overcoming the main limitations of previous 
approaches and providing significantly better results. 
The method exploits evolutionary techniques to 
automatically induce a very effective test program. 
Assembly programs are internally represented as 
directed acyclic graphs and evolved to maximize the 
attained fault coverage. Concurrently, internal 

parameters are adapted to their optimal values. Human 
intervention is limited to the enumeration of all available 
instructions and their possible operands. 

Experiments gathered exploiting a prototypical tool 
on the i8051 microprocessor show that, despite the much 
lower human intervention, the method is able to 
overcome the results of [CSSV01] in term of attained 
fault coverage. 

The paper is organized as follows. Section 2 details 
test-program generation and adopted evolutionary 
techniques. Section 3 reports the experimental 
evaluation, while Section 3 draws some conclusions 

2 Test-Program Generation 

This paper proposes an automatic methodology for 
generating a test program able to attain high fault 
coverage figures. Indeed, creating in an automated way 
programs able to solve problems is a fascinating task and 
has always been one of the more desired goals of 
computer science. 

 

generator

test
program

instruction
library

netlist

fault
simulatorgenerator

test
program

instruction
library

netlist

fault
simulator

 

Figure 1: System Architecture 

The overall architecture of the proposed approach is 
shown in Figure 1. The generator induces test programs 
exploiting an external instruction library that describes 
the syntax of the microprocessor assembly language. The 
generator utilizes a fault simulator to evaluate the 
generated test programs and to gathered relevant 
information for driving the optimization process. 

Next Sections detail the approach. 

2.1 Representation 

Test program generation exploits MicroGP, an 
approach for inducing assembly programs able to reach a 
specific goal. MicroGP was theoretically developed in 
[CCSS02a]. It utilizes a directed acyclic graph (DAG) 
for representing the flow of a program, and an 
instruction library for describing the assembly syntax. 
The loose coupling between these two elements enables 



exploiting the approach with different instruction sets, 
formalisms and conventions.  
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Figure 2: DAG and Instruction library 

Each node of the DAG (Figure 2) contains a pointer 
inside the instruction library and, when needed, its 
parameters (i.e., immediate values or register 
specifications). For instance, Figure 3 shows a sequential 
node that will be translated into an “ORL A, R1”, i.e., a 
bit-wise OR between accumulator and register R1. 
DAGs are built with four kinds of nodes: 
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Figure 3: A sequential instruction  

• Prologue and epilogue nodes are always present and 
represent required operations, such as initializations. 
They depend both on the processor and on the 
operating environment, and they may be empty. The 
prologue has no parent node, while the epilogue has 

no children. These nodes may never be removed 
from the program, nor changed. 

• Sequential-instruction nodes represent common 
operations, such as arithmetic or logic ones (e.g., 
node B). They have out-degree 1 and the number of 
parameters changes from instruction to instruction. 
Unconditional branches are considered sequential, 
since execution flow does not split (e.g., node D). 

• Conditional-branch nodes are translated to 
assembly-level conditional-branch instructions (e.g., 
node A). All conditional branches implemented in 
the target assembly languages must be included in 
the library. 

2.2 Program Induction 

Test programs are induced by modifying DAG 
topology and by mutating parameters inside DAG nodes. 
Both kinds of modifications are embedded in an 
evolutionary algorithm implementing a (µ+λ) strategy. 

In more details, a population of µ individuals is 
cultivated, each individual representing a test program. 
In each step, an offspring of λ new individuals are 
generated. Parents are selected using tournament 
selection with tournament size τ (i.e., τ individuals are 
randomly selected and the best is picked).  Each new 
individual is generated by applying one or more genetic 
operators. The cumulative probability of applying at 
least n consecutive operators is equal to n

cp . 

After creating new λ individuals, the best µ programs 
in the population of (µ+λ) are selected for surviving. 

The initial population is generated creating µ empty 
programs (only prologue and epilogue) and then 
applying im consecutive random mutations to each. 

The evolution process iterates until the population 
reaches a steady state condition, i.e., no improvements 
are recorded for Sg generations. 

Three mutation and one crossover operators are 
implemented and activated with probability padd, pdel, 
pmod and pxover respectively. 
• Add node: a new node is inserted into the DAG in a 

random position. The new node can be either a 
sequential instruction or a conditional branch. In both 
cases, the instruction referred by the node is 
randomly chosen. If the inserted node is a branch, 
either unconditional or conditional, one of the 
subsequent nodes is randomly chosen as the 
destination. Remarkably, when an unconditional 
branch is inserted, some nodes in the DAG may 
become unreachable (e.g., node E in Figure 2). 

• Remove node: an existing internal node (except 
prologue or epilogue) is removed from the DAG. If 
the removed node was the target of one or more 
branch, parents’ edges are updated. 



• Modify node: all parameters of an existing internal 
node are randomly changed. 

• Crossover: two different programs are mated to 
generate a new one. First, parents are analyzed to 
detect potential cutting points, i.e., vertices in the 
DAG that if removed create disjoint sub-graphs (e.g., 
node C in Figure 2). Then a standard 1-point 
crossover is exploited to generate the offspring. 

2.3 Program Evaluation 

Test program evaluation associates a fitness value to 
each test program. Biological fitness measures the 
capacity of an organism to survive and transmit its 
genotype to reproductive offspring as compared to 
competing organisms. For the purpose of this paper, the 
fitness of a test program measures its efficacy (attained 
fault coverage) and its potential (ability to excite new 
faults).  

Fitness values are used to probabilistically select the 
λ parents for generating new offspring and to 
deterministically select the best µ individuals surviving 
at the end of each evolution step.  

After translating the DAG into a syntactically correct 
assembly program, the execution of the test case is fault 
simulated. Three values are gathered: the number of 
excited faults (Na); the number of faults that modified at 
least a memory element (Nm); the number of detected 
faults (Nd). Let Ntot be the total number of faults, the 
fitness is calculated as: 2( )a tot m tot df N N N N N= + ⋅ + ⋅ .  

Faults are marked detected coherently with the test 
solution adopted, e.g., a signature into a specified 
memory position available to the ATE through DMA, a 
linear feedback shift register (LFSR) monitoring buses, a 
response analyzer connected to microprocessor outputs, 
or other architectures. 

2.4 Auto Adaptation 

The proposed approach is able to internally tune both 
the number of consecutive random mutations and the 
activation probabilities of all operators. Modifying these 
parameters, the algorithm is able to shape the search 
process, significantly improving its performances. 

The number of consecutive random mutations is 
controlled by parameter pc, which, intuitively, molds the 
mutation strength in the optimization process. Generally, 
in the beginning it is better to adopt a high value, 
allowing offspring to strongly differ from parents. On 
the other hand, toward the end of the search process, it is 
preferable to reduce diversity around the local optimum, 
allowing small mutations only. Initially, the maximum 
value is adopted (pc = 0.9). Then, the MicroGP monitors 
improvements: let IH be the number of newly created 

individuals attaining a fitness value higher than their 
parents over the last H generations. At the end of each 
generation, the new pc value is calculated 

as (1 )new H
c c

Ip p
H

α α
λ

= ⋅ + − ⋅
⋅

. Then pc is saturated to 

0.9. The coefficient α introduces inertia to unexpected 
abrupt changes.  

Regarding activation probabilities, initially they are 
set to the same value padd = pdel =  pmod = pxover = 0.25. 
During evolution, probability values are updated 
similarly to mutation strength:  let O1

OP be the number of 
successful invocation of genetic operator OP in the last 
generation, i.e., the number of invocations of OP where 
the resulting individual attained a fitness value higher 
than its parents; and let O1 be the total number of 
operators invoked in the last generation. At the end of 
each generation, the new values are calculated as 

1

1

(1 )
OP

new
OP OP

Op p
O

α α= ⋅ + − ⋅ . Since it is possible that 

pc > 0, O1 may be significantly larger than λ. Activation 
probabilities are forced to avoid values below .01 and 
over 0.9, then normalized to padd + pdel + pmod + pxover = 1. 
If O1 = 0, then all activation probabilities are pushed 
towards initial values.  

3 Experimental Results 

A prototype of the proposed test program generator 
was implemented in about 3,000 lines of C code. For 
evaluating test programs an in-house developed fault-
parallel event-driven fault simulator is used. 

The methodology was tested on an i8051 core. 
Despite its relatively old age, the i8051 is one of the 
most popular 8-bit micros in use today. Its memory 
architecture includes 128 bytes of internal data memory 
that are accessible directly by its instructions. A 32-byte 
segment of this 128-byte memory block is bit 
addressable by a subset of the i8051 instructions, namely 
the bit-instructions. 

The i8051 instructions range from 0-operand ones, 
like “DIV AB” (divide accumulator A by B) where all 
operands are implicit, to 3-operand ones, like 
“CJNE Op1, Op2, RelAddr” (compare Op1 with Op2 
and jump if they are not equal). The i8051 allows 5 
different addressing types: immediate, direct, indirect, 
external direct and code indirect. As in many CISC, 
registers are not orthogonal to the instructions and 
addressing modes. 

The instruction library for the i8051 consists in 81 
entries: prologue, epilogue, 66 sequential operations and 
13 conditional branches. Listing instructions with their 
syntax is a trivial task. On the contrary in [CSSV01] 
preparing the 213 macros required two working days of 
an experienced engineer. 



The methodology was tested on a gate-level 
implementation consisting in about 12K gates connected 
to a program memory of 4 Kbytes and a data memory of 
2 Kbytes. The complete fault list consists of 28,792 
permanent single-bit stack-at faults. A response analyzer 
was assumed connected to microprocessor output ports 
and the signature available to the ATE. The test program 
generator inserts the consequent observability 
instructions each time a DAG is mapped to an assembly 
program. 

Evaluation has been performed on a Sun Enterprise 
250 running at 400 MHz and equipped with 2 Gbytes of 
RAM. The full generation of the test program required 
few days, a time comparable with [CSSV01]. 

Table 1 shows the parameters of the test program 
generator. They are all standard values and do not 
require special care. Mutation strength pc and activation 
probabilities (padd, pdel, pmod and pxover), on the other hand, 
require careful tuning and are automatically chosen by 
the algorithm. 

 
PAR MEANINGS VALUE

µ Population size 5 
λ Offspring size 10 
τ Tournament size  2 
im Initial mutations 100 
H History for auto-adaption 4 
α Auto-Adaption inertia  0.4 
Sg Steady state 500 

Table 1: Test Program Generator Parameters 

In order to assess the effectiveness of the approach, 
the induced test program is compared with a set of 
selected test programs. Table 2 reports the attained fault 
coverage.  

Fibonacci and int2bin are two cross-compiled 
algorithms. The former calculates the Fibonacci series, 
while the latter converts an integer to a binary 
representation. Plausibly, the attained fault coverage is 
quite low: both are only able to detect 36.04% of the 
faults.  

 
Approach FC [%] 
Fibonacci 36.04 
int2bin 36.04 
TestAll 36.35 
Random 62.93 
Random Macro 80.19 
ATPGS 85.19 
MicroGP 90.77 

Table 2: Experimental Results 

TestAll is an exhaustive functional test program 
devised by the microprocessor designer, it is relatively 
long and includes several loops. It tests all possible 
instructions; however, since it disregards observability, 
the fault coverage attained is only slightly superior to 
former approaches.  

Random is the best result attained simulating 
randomly-generated test programs without evolutionary 
mechanisms (i.e., selection, mating, survival of the fittest 
and auto adaptation). For a fair comparison, the same 
number of programs evaluated by the MicroGP during 
the generation phase was simulated.  

Random Macro corresponds to the results achieved 
by randomly selecting a sequence of macros created 
according to [CSSV01]. Results are considerably better 
than for purely random approach since macros were 
carefully devised by experts and include sharp 
mechanisms to make the results observable. 

ATPGS reports the result of [CSSV01] where macros 
and a limited number of evolutionary techniques are 
exploited. In the approach, a genetic algorithm is given 
the goal to optimize parameters of heuristically selected 
macros. Program structures are not evolved, but 
determined by internal macro code. 

MicroGP outperforms all former approaches, 
reaching a fault coverage of 90.77%. The compilation of 
the instruction library is a trivial task compared to 
[CSSV01] and the improvements stems from the 
enhanced evolutionary mechanisms and the sharper 
fitness.  

A deeper analysis of the fault list enabled identifying 
a set of combinationally untestable faults in the control 
unit. Pruning these faults, the fault coverage attained by 
the MicroGP reaches 94.59%. 

4 Conclusions 

Software BIST methodologies present several 
advantages over scan-based ones, they do not require 
high-cost ATE equipment, and they allow an at-speed 
test of the processor core. Furthermore on a 
microprocessor core the insertion of test architectures 
may be unpractical or incompatible with other SOC-
level DFT structures. 

In this paper we presented a new approach for 
devising test programs for a microprocessor core. The 
methodology exploits innovative evolutionary 
techniques to direct the search process.  

The test program generator utilizes a directed acyclic 
graph for representing the flow of an assembly program, 
and an instruction library for describing the assembly 
syntax. The loose coupling between these two elements 
enables exploiting the approach with different instruction 
sets, formalisms and conventions.  



Moreover, concurrently to test program generation, 
the evolutionary core adapts its internal parameters, 
reducing even more the required user effort. 

Experiments gathered on the i8051 microprocessor 
exploiting a prototypical tool show that the proposed 
approach is able to reach higher fault coverage with 
fewer limitations than alternative approaches.  

In contrast to other methodologies, human 
intervention is limited to the enumeration of all available 
instructions and their possible operands. Indeed, the 
experimented test program generation task required an 
instruction library of 81 entries, while in [CSSV01], for 
the same processor, an experienced engineer needs two 
working days to prepare the set of 213 macros. 

Furthermore, the ability to generate assembly level 
programs for a generic microprocessor may be exploited 
for different purposes. In [CCSS02b], a similar approach 
was used against a register-level VHDL description for 
optimizing code coverage metrics. 

Current work is targeted to apply the proposed 
approach to more complex processors, with enhanced 
features such as caches and pipelines. The first results 
are already available on a DLX/pII [PaHe96], an 
academic microprocessor implementing a 5-stage 
pipeline, and a SPARC V8 [SPARC].  

5 References 

[AABH99] J. Shen, J. Abraham, D. Baker, T. Hurson, M. 
Kinkade, “Functional verification of the Equator 
MAP1000 microprocessor”, 36th Design 
Automation Conference, 1999, pp. 169 -174 

[BaPa99] K. Batcher, C. Papachristou, “Instruction 
Randomization Self Test For Processor Cores”, 
IEEE VLSI Test Symposium, 1999, pp. 34-40 

[BiMa95] U. Bieker and P. Marwedel, “Retargetable self-test 
program generation using constraint logic 
programming,” 32nd Design Automation 
Conference, 1995, pp. 605 – 611 

[CCSS02a] F. Corno, G. Cumani, M. Sonza Reorda, G. 
Squillero, “Efficient Machine-Code Test-Program 
Induction”, Congress on Evolutionary 
Computation, 2002, pp. 1486-1491 

[CCSS02b] F. Corno, G. Cumani, M. Sonza Reorda, G. 
Squillero, “Evolutionary Test Program Induction 
for Microprocessor Design Verification”, to appear 
in: 11th Asian Test Symposium, 2002 

[ChDe00] L. Chen, S. Dey, “DEFUSE: A Deterministic 
Functional Self-Test Methodology for Processors”, 
IEEE VLSI Test Symposium, 2000, pp. 255-262 

[CSSV01] F. Corno, M. Sonza Reorda, G. Squillero, M. 
Violante, “On the Test of Microprocessor IP 
Cores”, IEEE Design, Automation & Test in 
Europe, 2001, pp. 209-213 

[Koza98] J. R. Koza, “Genetic programming”, Encyclopedia 
of Computer Science and Technology, vol. 39, 
Marcel-Dekker, 1998, pp. 29-43 

[KPGZ02] N. Kranitis, A. Paschalis, D. Gizopoulos, Y. 
Zorian, “Effective software self-test methodology 
for processor cores”, IEEE Design, Automation & 
Test in Europe, 2002, pp. 592-597 

[PaHe96] D. A. Patterson and J. L. Hennessy, Computer 
Architecture - A Quantitative Approach, (second 
edition), Morgan Kaufmann, 1996 

[PMNo99] C.A. Papachristou, F. Martin, M. Nourani, 
“Microprocessor Based Testing for Core-Based 
System on Chip”,ACM/IEEE Design Automation 
Conference, 1999, pp. 586-591 

[ShAb98] J. Shen and J.A. Abraham, “Native Mode 
Functional Test Generation for Processors with 
Applications to Self Test and Design Validation”, 
International Test Conference, 1998, pp. 990-999 

[SPARC] SPARC International, The SPARC Architecture 
Manual 

[ThAb80] S. Thatte, J. Abraham, “Test Generation for 
Microprocessors”, IEEE Transactions on 
Computers, Vol. C-29, June 1980, pp. 429-441 

[UBSh99] N. Utamaphethai, R.D. Blanton and J.P. Shen, 
“Superscalar Processor Validation at the 
Microarchitecture Level”, 12th IEEE International 
Conference on VLSI Design, 1999, pp. 300-305 


