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Abstract- Technology advances allow integrating on a single chip 
entire system, including memories and peripherals. The test of 
these devices is becoming a major issue for manufacturing 
industries. This paper presents a methodology for inducing test-
programs similar to genetic programming. However, it includes the 
ability to explicitly specify registers and resorts to directed acyclic 
graphs instead of trees. Moreover, it exploits a database containing 
the assembly-level semantic associated to each graph node. This 
approach is extremely efficient and versatile: candidate solutions 
are translated into source-code programs allowing millions of 
evaluations per second. The proposed approach is extremely 
versatile: the macro library allows easily changing target 
processor and environment. The approach was verified on three 
processors with different instruction sets, different formalisms and 
different conventions. A complete set of experiments on a test 
function are also reported for the SPARC processor. 

1 INTRODUCTION 

Technology advances allow integrating on a single chip 
entire system, including memories and peripherals. This new 
kind of devices is called Systems-On-a-Chip (SOCs) and 
often includes complex cores, like microprocessors, MPEG 
encoders/decoders and other dedicated blocks (Figure 1). Such 
cores are usually provided by third parties and designers 
may include them into SOCs rather easily and quickly.  

Before selling any electronic device, integrated-circuit 
producers need to check the correctness of the 
manufacturing process, and this test process accounts for a 
relevant percentage of the total production cost. Noticeably, 
checking SOC manufacturing is becoming a major issue, 
mainly because of the complexity of the embedded blocks 
and their limited accessibility.  

This paper takes into account a specific type of cores, 
namely pipelined microprocessor (µP) cores. Popular 
solutions for core testing exhibit several drawbacks when 
adopted for µP cores: both test length and test application 
may unfeasibly extend, and test architectures based on 
modifications of the core are likely to degrade performance. 
Forcing the core to execute a given test program appears a 
suitable solution since it does not suffer of the above 
limitations [13]. However, the difficulty to generate such a 
test program for pipelined designs complicates its adoption.  

Recently, Dey et al. proposed a deterministic method 
named DEFUSE [2] to generate test programs able to detect 
most manufacturing errors in the arithmetic and logic unit of 
a µP. The approach is very effective with combinationally 

testable parts, but shows limitations when hard-to-test 
sequential modules are addressed. Another approach, 
proposed by Batcher and Papachristou [1], is based on 
generating random sequences of instructions. However, this 
approach requires the insertion of additional hardware in the 
µP core under test. Recently, Sheen et al. proposed a 
technique where the processor itself generates test at run-
time by self-modifying code [15]. Interestingly, 
Utamaphethai et al. showed a method for generating test 
programs for validating the branch prediction mechanism of 
the PowerPC604 [19]. The methodology generated very 
effective programs, but also exploits a deep knowledge of 
the processor and cannot be generally applied. 

 
 

 
Figure 1: System-On-a-Chip 

 
In [3] is proposed a partially automated method for 

generating test programs from gate-level descriptions. In [4] 
this method is extended to the case, in which only a high-
level description of the processor is available. Both 
approaches were tuned for non-pipelined µP and relied on a 
library of chunks of instructions able to activate specific 
parts in the design. This library is carefully designed by 
programmers and exploited in a successive automatic phase, 
aiming at selecting the best macros and identifying their 
optimal parameters values. 

Relying on the ability to evaluate the efficacy of a given 
test program both at RT- and gate-level, capacity shown in 
previous contributions, this paper presents a methodology 
for inducing test-programs for pipelined µP cores. The 
methodology starts from a genetic programming (GP) 
scheme. However, problem-specific requirements and 
characteristics entail an ad-hoc approach. 
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Next Section better details µP-core test programs, while 
assembly-level program induction is tackled in Section 3. 
Section 4 contains some experimental details and Section 5 
concludes the paper. 

2 MICRO-PROCESSOR CORE TEST PROGRAMS 

Production test may consist in forcing the µP core to execute 
a test program while observing its outputs. This test program 
should allow discriminating fully working µP cores from 
malfunctioning ones. The effectiveness of a test program is 
its ability to expose internal failures, making them 
observable. For instance, an arithmetic operation is not 
observable; however, if the test program put the result on an 
output, it becomes possible to check its correctness from the 
outside. 

Executing all possible operations with all possible 
operand values and exposing the results is not only 
inefficient, but also insufficient. Such a test program would 
be inapplicable for the required size, and may be unable to 
detect several defects. Indeed, the assembly-language 
programmer must be aware of several un-intuitive 
peculiarities. 

In modern µP instructions are pipelined, this means that 
consecutively-executing instructions can have their 
execution overlapped in time. The details of instruction 
execution are arranged so that the CPU doesn't have to wait 
for one operation to finish before starting the next.  

 
     RegA = 100; 
     GOTO LABEL; 
     RegA = 0; 
     RegA = 10; 
LABEL:  
     RegA = RegA + 1; 

Figure 2: Pipeline Effects 
 
A striking peculiarity concerns program branches. When 

the CPU is ready to execute an instruction, it must first fetch 
that instruction (asking memory to retrieve the instruction at 
the appropriate address) and then execute that instruction 
(figuring out which operation is specified by that instruction 
and actually carrying it out). In modern pipelined 
architectures, at any given time, the CPU will be executing 
some instructions and, at the same time, it will be fetching 
the next instructions in the program. When a jump 
instruction is executed (for example, a call to a subroutine), 
the instruction appearing immediately after the call or jump 
in the code is already fetched in the pipeline. Thus, 
depending on µP architecture and implementation, the 
instruction following a branch may execute regardless of 
which way the branch goes. 

For instance, after the pseudo-code in Figure 2, variable A 
holds 1 and not 101. Several hazards also arise from data 
dependencies, when consecutive instructions operate on the 
same data (in Figure 2, for instance, consecutive instructions 

read and modify the value of register RegA, resulting in a 
hazard).  

Pipelined-processor assembly-language programmer 
must be constantly aware of all these problems while coding. 
Fortunately, modern compilers handle these peculiarities 
automatically and most of high-level programmers may 
ignore them, however, a test program able to test the 
pipeline must be written directly in machine code. 

3 ASSEMBLY-LEVEL TEST-PROGRAM INDUCTION 

Genetic Programming (GP) was defined as a domain-
independent problem-solving approach in which computer 
programs are evolved to solve, or approximately solve, 
problems [9]. GP addresses one of the more desired goals of 
computer science: creating, in an automated way, computer 
programs able to solve problems.  

In GP context programs are usually represented as tree. A 
tree is a special kind of directed acyclic graph where there is 
only one path between any two nodes. Tree representations 
have been traditionally implemented in the LISP language as 
S-expressions. However, in recent year, several researchers 
proposed to modify this conventional representation.  

Remarkably, in [6] the whole population was stored as a 
single directed acyclic graph, rather than as a forest of trees, 
leading to considerable savings of memory (structurally 
identical sub-trees are not duplicated) and computation (the 
value computed by each sub-tree for each fitness case can be 
cached). In [14] a significant speed-up was achieved 
extending the representation from trees to generic graphs 
and parallelizing the evolution process.  

For the purpose of this works, however, it is more 
interesting to examine techniques based on the idea of 
compiling GP programs either into some lower level, more 
efficient, virtual-machine code or even into machine code.  

Pioneering ideas date back to [7]. However, more 
recently in [11] the author suggested to directly evolving 
programs in machine-code form for completely removing 
the inefficiency in interpreting trees. More recently, a 
genome compiler has been proposed in [5], which 
transforms standard GP trees into machine code before 
evaluation. The possibilities offered by the Java virtual 
machine are also currently being explored [8], [10].  

3.1 Directed-Acyclic-Graph Representation 
Since the goal is to generate an assembly program, the 
canonical S-expression representation cannot be used. The 
tree representation was relaxed and the flow of the program 
is represented as a directed acyclic graph (DAG). The 
semantic of each node in the DAG consists in a pointer to a 
macro inside an instruction library and in parameter values. 
The macro represents a fragment of machine code, usually a 
single instruction, and parameters represent operand values 
and registers. It should be remarked that in any assembly 
language programmers may use several different registers, 
thus node semantic must include register specification.  



 

Figure 3: Generic Node 

A DAG is always translated to a syntactically-correct 
assembly program. However, it not possible guaranteeing a-
priori any semantic meaning. An induced program may 
perform operations on any register, and this exceptional 
freedom is essential to generate test programs.  

 

 
Figure 4: Sequential and Branch Nodes 

Moreover, the library approach has been developed to 
enable the genetic core and the DAG structure to work with 
different assembly languages. Different processors not only 
implement different instruction sets, but also use different 
formalisms and conventions. Indeed, the method has been 
successfully tested with three different processors: an i8051, 
a CISC (complex instruction set computer) micro-controller 
developed by Intel; a DLX, an academic processor 
implementing a 5-stage pipeline [12] and a SPARC, the well 
known strongly-pipelined RISC (reduced instruction set 
computer) processor [18]. Additionally, exploiting abstract 
macros the program is able to infer data dependencies this 
ability may be used during assembly-level program 
generation to avoid inconsistencies. 

The DAG is built with four kinds of node: a prologue, an 
epilogue, sequential instructions, and conditional branches. 

The prologue and epilogue nodes are always present and 
represent required operations. They depend on the processor 
and on the operating environment. The prologue has no 
parent node and it is followed by a child node. Typically, it 
contains initialization code. The epilogue has no child nodes. 
These nodes may not be removed from the program, nor 
changed. 

Sequential-instruction nodes (Figure 4, right) represent 
common operations, such as arithmetic or logic ones. They 
are characterized of having a single child. Their number of 
parameters may change, for instance, on certain processor 

some instructions use an implicit operand, thus the register 
specification s missing. 

Conditional-branch nodes (Figure 4, left) are translated to 
assembly-level conditional-branch instructions. All common 
assembly languages implement some jump-if-condition 
mechanisms. Programmers must use two instructions to 
check a condition: a test and then a conditional branch.  

 
  COMPARE A, B 
  JUMP-IF-GREATER g_label 
  ; 
  ; These operations are executed if A <= B 
  ; 
g_label:   

Figure 5: Conditional Branch 
 
Figure 5 reports the assembly pseudo code for a simple if-

then construct. It’s remarkable that, since all these details are 
masked by compilers, they do not exist in high-level 
languages.  

All conditional branches implemented in the target 
assembly languages are included in the macro library.  

Unconditional branches are treated as sequential 
operations, since execution flow does not split.  

DAG representation prohibits backward branches, either 
conditional or unconditional. This characteristic guarantees 
program termination, since no endless loop may be 
implemented. However, the effects of this small reduction in 
semantic power still need to be evaluated with regards to µP 
test-program diagnostic effectiveness. As a solution, library 
will probably include a macro containing a safe backward 
jump, but it will be represented as a sequential node at the 
DAG level. 

3.2 Evolution 
Test-program induction proceeds on two distinct levels: the 
syntactic level, where the DAG topology is modified; and 
the semantic level, where it is the macro referred by a DAG 
node that is modified. Both kinds of modifications are 
embedded in an evolutionary algorithm, implementing a 
(µ+λ) strategy. 
 

 

 
Figure 6: Evolutionary operators 
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In more details, evolution begins with a population of µ 
empty programs, i.e., programs composed only of prologue 
and epilogue. In each generation, λ new individuals are 
generated by mutating an existing individual, recombination 
is not exploited. Parents are selected using tournament 
selection with tournament size τ. Once the parent is selected, 
mutation operator is applied. Three mutation operators were 
implemented and are chosen with equal probability: 
• Add node (syntactic): a new node is inserted after an 

existing node into the DAG. The new node can be either 
a sequential instruction or a conditional branch. In both 
cases, the macro refereed by the node is randomly 
chosen. If the inserted node is a conditional branch, a 
node implementing a random sequential instruction is 
also inserted after the node. 

• Remove node (syntactic): an existing internal node 
(not the prologue or the epilogue) is removed from the 
DAG. If the removed node was the target of one or 
more branch, parents’ edges are updated. On the other 
hand, removing a conditional branch requires no special 
attention. 

• Modify node (semantic): macro parameters of an 
existing internal node are randomly changed. 
Parameters include both immediate values and register 
specifications. However, the macro implemented by the 
node may not be changed. 

After creating new λ individuals, the best µ programs in the 
population of (µ+λ) are selected for surviving.  

The evolution process iterates until population reaches a 
steady state condition, i.e., no improvements are recorded 
for a St generations. 

3.3 Evaluation 
While the final target of test-program generation is to detect 
production errors, for the purpose of this paper a more 
practical goal was adopted. 

Macro library was composed to implement the 
SPARC V8/V9 assembly language. Prologue and epilogue 
was set to match the GNU C Compiler [17] convention. In 
this framework generated programs were simply assembled 
and linked to a stub interface.  

Translating a DAG to the SPARC V8/V9 assembly 
language is rather a simple operation, since violating 
pipeline timing for data dependencies is legal, i.e., the µP 
does not hang, although the produced result may not be 
intuitive. On the other hand, sequences of consecutives 
branches, conditional or unconditional, are considered 
illegal. Thus, during translation DAG structure is analyzed, 
and opportune NOP (useless instructions) are added.  

This mechanism allows to generate an executable 
program extremely fast and to execute it without any 
overhead.  

4 EXPERIMENTAL EVALUATION 

A prototype of the proposed approach was implemented in 
ANSI C and evaluated on a simple test problem. The goal of 
the experiment was to induce a program able to discriminate 
between even and odd values, and to set all bits in a 
processor register accordingly (see Figure 7).  

 
goal_function(x) 
{ 
 RegA : 32-bit internal register 
 
 if(x is even) { 
  RegA = 11111111111111111111111111111111 
 } else { 
  RegA = 00000000000000000000000000000000 
 } 
} 

Figure 7: Test Goal Function 
 
The fitness value of a solution measures its ability to 

solve the problem. In this context, it measures the percentage 
of correct bits in the result, i.e., the number of 1’s in RegA 
when x is even, or the number of 0’s when x is odd. To 
better evaluate each candidate solution, the corresponding 
programs were run 10,000 times with random parameter 
values, and fitness was averaged on the number of tries. 

Noticeably, since the candidate-solution programs are 
compiled and linked, running 10,000 evaluations require no 
special effort. On a SPARC Ultra, translating a solution to 
an assembly program, compiling and linking it requires, on 
the average, 0.15 seconds of CPU time. Running the 
program for 10,000 trials requires, on the average, 0.01 
seconds of CPU time. The program is therefore able to 
evaluate each single solution on 1,000,000 different runs in 
about a single second. 

To assess the feasibility of the approach, the test program 
was tackled with different values of µ, λ, τ. Since the goal of 
the evaluation was not to solve the test problem, but to 
evaluate the influence of parameters, steady-state threshold 
St was set to a very low value (100). 

Table 1 reports attained results. For each set of µ, λ and τ 
it is reported the fitness attained by the best individual 
[Fitness] and the characteristics of the corresponding 
program, in term of sequential nodes [Sequential] and 
branch nodes [Branch]. 

It can be noted that, whenever steady-state threshold was 
extremely low, several times the optimal program was 
induced, i.e., a program able to always set correctly all bits 
of output register. Fitness around 50% means random 
drifting, while a higher value indicates that the correct 
program was actually being induced. 

 
 



µ λ τ Sequential Branch Fitness
1 1 1 7 4 53.44%
5 1 1 6 6 53.46%

10 1 1 3 2 52.40%
50 1 1 1 0 52.35%

1 5 1 4 1 53.54%
5 5 1 7 3 53.74%

10 5 1 10 2 65.69%
50 5 1 6 3 53.53%

1 10 1 16 8 53.85%
5 10 1 9 4 53.52%

10 10 1 33 19 75.58%
50 10 1 18 6 96.94%

1 50 1 16 8 100.00%
5 50 1 10 3 53.97%

10 50 1 14 8 74.43%
50 50 1 37 14 98.50%

5 1 2 5 1 52.53%
10 1 2 4 1 53.38%

5 5 2 7 1 53.47%
10 5 2 13 6 96.94%
50 5 2 5 0 53.52%

5 10 2 7 3 53.55%
10 10 2 13 4 53.82%
50 10 2 10 6 53.94%

5 50 2 16 6 100.00%
10 50 2 15 4 95.32%
50 50 2 19 7 100.00%

5 1 5 3 1 52.29%
10 1 5 2 1 52.25%
50 1 5 1 1 52.34%

5 5 5 8 3 53.28%
10 5 5 20 8 60.89%
50 5 5 6 5 53.44%

5 10 5 22 6 84.95%
10 10 5 22 8 57.62%
50 10 5 14 5 53.54%

5 50 5 15 7 100.00%
10 50 5 17 6 100.00%
50 50 5 10 4 53.94%  

Table 1: Test Program Evaluation 

5 CONCLUSIONS 

An evolutionary algorithm for inducing programs was 
presented. First, the method includes the ability to explicitly 
specify registers either as operands or targets. Furthermore, 
it relaxes the usual tree-based representation, resorting to 
DAG. Finally, it couples a standard GP approach with a 
database containing the assembly-level semantic associated 
to DAG nodes. 

Exploiting DAG and library the proposed approach is 
extremely efficient and versatile. Candidate solutions are 
translated into source-code programs that can be assembled 
and linked using standard compilers. Such executable 
programs allow a fast evaluation: millions of runs may be 
performed in just a second. 

Moreover, the approach is versatile. The macro library 
allows changing the target µP and environment easily. The 
approach was verified on three processors with different 
instruction sets, different formalisms and different 
conventions.  

This method can be seen as a general enhancement of 
standard GP, however it was specifically devised for 
inducing test-program for µP cores, a critical area in modern 
industry. Experimental results show its efficacy and 
feasibility, thus authors are now actively applying it in the 
electronic area. 
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