
Efficent Machine-Code
Test-Program Induction

F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero
Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

http://www.cad.polito.it/

Abstract- Technology advances allow integrating on a single chip
entire system, including memories and peripherals. The test of
these devices is becoming a major issue for manufacturing
industries. This paper presents a methodology for inducing test-
programs similar to genetic programming. However, it includes the
ability to explicitly specify registers and resorts to directed acyclic
graphs instead of trees. Moreover, it exploits a database containing
the assembly-level semantic associated to each graph node. This
approach is extremely efficient and versatile: candidate solutions
are translated into source-code programs allowing millions of
evaluations per second. The proposed approach is extremely
versatile: the macro library allows easily changing target
processor and environment. The approach was verified on three
processors with different instruction sets, different formalisms and
different conventions. A complete set of experiments on a test
function are also reported for the SPARC processor.

1 INTRODUCTION

Technology advances allow integrating on a single chip
entire system, including memories and peripherals. This new
kind of devices is called Systems-On-a-Chip (SOCs) and
often includes complex cores, like microprocessors, MPEG
encoders/decoders and other dedicated blocks (Figure 1). Such
cores are usually provided by third parties and designers
may include them into SOCs rather easily and quickly.

Before selling any electronic device, integrated-circuit
producers need to check the correctness of the
manufacturing process, and this test process accounts for a
relevant percentage of the total production cost. Noticeably,
checking SOC manufacturing is becoming a major issue,
mainly because of the complexity of the embedded blocks
and their limited accessibility.

This paper takes into account a specific type of cores,
namely pipelined microprocessor (µP) cores. Popular
solutions for core testing exhibit several drawbacks when
adopted for µP cores: both test length and test application
may unfeasibly extend, and test architectures based on
modifications of the core are likely to degrade performance.
Forcing the core to execute a given test program appears a
suitable solution since it does not suffer of the above
limitations [13]. However, the difficulty to generate such a
test program for pipelined designs complicates its adoption.

Recently, Dey et al. proposed a deterministic method
named DEFUSE [2] to generate test programs able to detect
most manufacturing errors in the arithmetic and logic unit of
a µP. The approach is very effective with combinationally

testable parts, but shows limitations when hard-to-test
sequential modules are addressed. Another approach,
proposed by Batcher and Papachristou [1], is based on
generating random sequences of instructions. However, this
approach requires the insertion of additional hardware in the
µP core under test. Recently, Sheen et al. proposed a
technique where the processor itself generates test at run-
time by self-modifying code [15]. Interestingly,
Utamaphethai et al. showed a method for generating test
programs for validating the branch prediction mechanism of
the PowerPC604 [19]. The methodology generated very
effective programs, but also exploits a deep knowledge of
the processor and cannot be generally applied.

Figure 1: System-On-a-Chip

In [3] is proposed a partially automated method for

generating test programs from gate-level descriptions. In [4]
this method is extended to the case, in which only a high-
level description of the processor is available. Both
approaches were tuned for non-pipelined µP and relied on a
library of chunks of instructions able to activate specific
parts in the design. This library is carefully designed by
programmers and exploited in a successive automatic phase,
aiming at selecting the best macros and identifying their
optimal parameters values.

Relying on the ability to evaluate the efficacy of a given
test program both at RT- and gate-level, capacity shown in
previous contributions, this paper presents a methodology
for inducing test-programs for pipelined µP cores. The
methodology starts from a genetic programming (GP)
scheme. However, problem-specific requirements and
characteristics entail an ad-hoc approach.

PCI

C
P
U

Core

SRA
M

DSP

MPEG

ADC ADC

Next Section better details µP-core test programs, while
assembly-level program induction is tackled in Section 3.
Section 4 contains some experimental details and Section 5
concludes the paper.

2 MICRO-PROCESSOR CORE TEST PROGRAMS

Production test may consist in forcing the µP core to execute
a test program while observing its outputs. This test program
should allow discriminating fully working µP cores from
malfunctioning ones. The effectiveness of a test program is
its ability to expose internal failures, making them
observable. For instance, an arithmetic operation is not
observable; however, if the test program put the result on an
output, it becomes possible to check its correctness from the
outside.

Executing all possible operations with all possible
operand values and exposing the results is not only
inefficient, but also insufficient. Such a test program would
be inapplicable for the required size, and may be unable to
detect several defects. Indeed, the assembly-language
programmer must be aware of several un-intuitive
peculiarities.

In modern µP instructions are pipelined, this means that
consecutively-executing instructions can have their
execution overlapped in time. The details of instruction
execution are arranged so that the CPU doesn't have to wait
for one operation to finish before starting the next.

 RegA = 100;
 GOTO LABEL;
 RegA = 0;
 RegA = 10;
LABEL:
 RegA = RegA + 1;

Figure 2: Pipeline Effects

A striking peculiarity concerns program branches. When

the CPU is ready to execute an instruction, it must first fetch
that instruction (asking memory to retrieve the instruction at
the appropriate address) and then execute that instruction
(figuring out which operation is specified by that instruction
and actually carrying it out). In modern pipelined
architectures, at any given time, the CPU will be executing
some instructions and, at the same time, it will be fetching
the next instructions in the program. When a jump
instruction is executed (for example, a call to a subroutine),
the instruction appearing immediately after the call or jump
in the code is already fetched in the pipeline. Thus,
depending on µP architecture and implementation, the
instruction following a branch may execute regardless of
which way the branch goes.

For instance, after the pseudo-code in Figure 2, variable A
holds 1 and not 101. Several hazards also arise from data
dependencies, when consecutive instructions operate on the
same data (in Figure 2, for instance, consecutive instructions

read and modify the value of register RegA, resulting in a
hazard).

Pipelined-processor assembly-language programmer
must be constantly aware of all these problems while coding.
Fortunately, modern compilers handle these peculiarities
automatically and most of high-level programmers may
ignore them, however, a test program able to test the
pipeline must be written directly in machine code.

3 ASSEMBLY-LEVEL TEST-PROGRAM INDUCTION

Genetic Programming (GP) was defined as a domain-
independent problem-solving approach in which computer
programs are evolved to solve, or approximately solve,
problems [9]. GP addresses one of the more desired goals of
computer science: creating, in an automated way, computer
programs able to solve problems.

In GP context programs are usually represented as tree. A
tree is a special kind of directed acyclic graph where there is
only one path between any two nodes. Tree representations
have been traditionally implemented in the LISP language as
S-expressions. However, in recent year, several researchers
proposed to modify this conventional representation.

Remarkably, in [6] the whole population was stored as a
single directed acyclic graph, rather than as a forest of trees,
leading to considerable savings of memory (structurally
identical sub-trees are not duplicated) and computation (the
value computed by each sub-tree for each fitness case can be
cached). In [14] a significant speed-up was achieved
extending the representation from trees to generic graphs
and parallelizing the evolution process.

For the purpose of this works, however, it is more
interesting to examine techniques based on the idea of
compiling GP programs either into some lower level, more
efficient, virtual-machine code or even into machine code.

Pioneering ideas date back to [7]. However, more
recently in [11] the author suggested to directly evolving
programs in machine-code form for completely removing
the inefficiency in interpreting trees. More recently, a
genome compiler has been proposed in [5], which
transforms standard GP trees into machine code before
evaluation. The possibilities offered by the Java virtual
machine are also currently being explored [8], [10].

3.1 Directed-Acyclic-Graph Representation
Since the goal is to generate an assembly program, the
canonical S-expression representation cannot be used. The
tree representation was relaxed and the flow of the program
is represented as a directed acyclic graph (DAG). The
semantic of each node in the DAG consists in a pointer to a
macro inside an instruction library and in parameter values.
The macro represents a fragment of machine code, usually a
single instruction, and parameters represent operand values
and registers. It should be remarked that in any assembly
language programmers may use several different registers,
thus node semantic must include register specification.

Figure 3: Generic Node

A DAG is always translated to a syntactically-correct
assembly program. However, it not possible guaranteeing a-
priori any semantic meaning. An induced program may
perform operations on any register, and this exceptional
freedom is essential to generate test programs.

Figure 4: Sequential and Branch Nodes

Moreover, the library approach has been developed to
enable the genetic core and the DAG structure to work with
different assembly languages. Different processors not only
implement different instruction sets, but also use different
formalisms and conventions. Indeed, the method has been
successfully tested with three different processors: an i8051,
a CISC (complex instruction set computer) micro-controller
developed by Intel; a DLX, an academic processor
implementing a 5-stage pipeline [12] and a SPARC, the well
known strongly-pipelined RISC (reduced instruction set
computer) processor [18]. Additionally, exploiting abstract
macros the program is able to infer data dependencies this
ability may be used during assembly-level program
generation to avoid inconsistencies.

The DAG is built with four kinds of node: a prologue, an
epilogue, sequential instructions, and conditional branches.

The prologue and epilogue nodes are always present and
represent required operations. They depend on the processor
and on the operating environment. The prologue has no
parent node and it is followed by a child node. Typically, it
contains initialization code. The epilogue has no child nodes.
These nodes may not be removed from the program, nor
changed.

Sequential-instruction nodes (Figure 4, right) represent
common operations, such as arithmetic or logic ones. They
are characterized of having a single child. Their number of
parameters may change, for instance, on certain processor

some instructions use an implicit operand, thus the register
specification s missing.

Conditional-branch nodes (Figure 4, left) are translated to
assembly-level conditional-branch instructions. All common
assembly languages implement some jump-if-condition
mechanisms. Programmers must use two instructions to
check a condition: a test and then a conditional branch.

 COMPARE A, B
 JUMP-IF-GREATER g_label
 ;
 ; These operations are executed if A <= B
 ;
g_label:

Figure 5: Conditional Branch

Figure 5 reports the assembly pseudo code for a simple if-

then construct. It’s remarkable that, since all these details are
masked by compilers, they do not exist in high-level
languages.

All conditional branches implemented in the target
assembly languages are included in the macro library.

Unconditional branches are treated as sequential
operations, since execution flow does not split.

DAG representation prohibits backward branches, either
conditional or unconditional. This characteristic guarantees
program termination, since no endless loop may be
implemented. However, the effects of this small reduction in
semantic power still need to be evaluated with regards to µP
test-program diagnostic effectiveness. As a solution, library
will probably include a macro containing a safe backward
jump, but it will be represented as a sequential node at the
DAG level.

3.2 Evolution
Test-program induction proceeds on two distinct levels: the
syntactic level, where the DAG topology is modified; and
the semantic level, where it is the macro referred by a DAG
node that is modified. Both kinds of modifications are
embedded in an evolutionary algorithm, implementing a
(µ+λ) strategy.

Figure 6: Evolutionary operators

Start

End

Start

End

Start

End

Start

End

Mutation
Add Node Delete Node Modify Node

Branch
Node

Sequential
Node

Instruction
Library

Parameters Macro

Code

Sum R =RegA
V = 23

ADD R, V

In more details, evolution begins with a population of µ
empty programs, i.e., programs composed only of prologue
and epilogue. In each generation, λ new individuals are
generated by mutating an existing individual, recombination
is not exploited. Parents are selected using tournament
selection with tournament size τ. Once the parent is selected,
mutation operator is applied. Three mutation operators were
implemented and are chosen with equal probability:
• Add node (syntactic): a new node is inserted after an

existing node into the DAG. The new node can be either
a sequential instruction or a conditional branch. In both
cases, the macro refereed by the node is randomly
chosen. If the inserted node is a conditional branch, a
node implementing a random sequential instruction is
also inserted after the node.

• Remove node (syntactic): an existing internal node
(not the prologue or the epilogue) is removed from the
DAG. If the removed node was the target of one or
more branch, parents’ edges are updated. On the other
hand, removing a conditional branch requires no special
attention.

• Modify node (semantic): macro parameters of an
existing internal node are randomly changed.
Parameters include both immediate values and register
specifications. However, the macro implemented by the
node may not be changed.

After creating new λ individuals, the best µ programs in the
population of (µ+λ) are selected for surviving.

The evolution process iterates until population reaches a
steady state condition, i.e., no improvements are recorded
for a St generations.

3.3 Evaluation
While the final target of test-program generation is to detect
production errors, for the purpose of this paper a more
practical goal was adopted.

Macro library was composed to implement the
SPARC V8/V9 assembly language. Prologue and epilogue
was set to match the GNU C Compiler [17] convention. In
this framework generated programs were simply assembled
and linked to a stub interface.

Translating a DAG to the SPARC V8/V9 assembly
language is rather a simple operation, since violating
pipeline timing for data dependencies is legal, i.e., the µP
does not hang, although the produced result may not be
intuitive. On the other hand, sequences of consecutives
branches, conditional or unconditional, are considered
illegal. Thus, during translation DAG structure is analyzed,
and opportune NOP (useless instructions) are added.

This mechanism allows to generate an executable
program extremely fast and to execute it without any
overhead.

4 EXPERIMENTAL EVALUATION

A prototype of the proposed approach was implemented in
ANSI C and evaluated on a simple test problem. The goal of
the experiment was to induce a program able to discriminate
between even and odd values, and to set all bits in a
processor register accordingly (see Figure 7).

goal_function(x)
{
 RegA : 32-bit internal register

 if(x is even) {
 RegA = 11111111111111111111111111111111
 } else {
 RegA = 00000000000000000000000000000000
 }
}

Figure 7: Test Goal Function

The fitness value of a solution measures its ability to

solve the problem. In this context, it measures the percentage
of correct bits in the result, i.e., the number of 1’s in RegA
when x is even, or the number of 0’s when x is odd. To
better evaluate each candidate solution, the corresponding
programs were run 10,000 times with random parameter
values, and fitness was averaged on the number of tries.

Noticeably, since the candidate-solution programs are
compiled and linked, running 10,000 evaluations require no
special effort. On a SPARC Ultra, translating a solution to
an assembly program, compiling and linking it requires, on
the average, 0.15 seconds of CPU time. Running the
program for 10,000 trials requires, on the average, 0.01
seconds of CPU time. The program is therefore able to
evaluate each single solution on 1,000,000 different runs in
about a single second.

To assess the feasibility of the approach, the test program
was tackled with different values of µ, λ, τ. Since the goal of
the evaluation was not to solve the test problem, but to
evaluate the influence of parameters, steady-state threshold
St was set to a very low value (100).

Table 1 reports attained results. For each set of µ, λ and τ
it is reported the fitness attained by the best individual
[Fitness] and the characteristics of the corresponding
program, in term of sequential nodes [Sequential] and
branch nodes [Branch].

It can be noted that, whenever steady-state threshold was
extremely low, several times the optimal program was
induced, i.e., a program able to always set correctly all bits
of output register. Fitness around 50% means random
drifting, while a higher value indicates that the correct
program was actually being induced.

µ λ τ Sequential Branch Fitness
1 1 1 7 4 53.44%
5 1 1 6 6 53.46%

10 1 1 3 2 52.40%
50 1 1 1 0 52.35%

1 5 1 4 1 53.54%
5 5 1 7 3 53.74%

10 5 1 10 2 65.69%
50 5 1 6 3 53.53%

1 10 1 16 8 53.85%
5 10 1 9 4 53.52%

10 10 1 33 19 75.58%
50 10 1 18 6 96.94%

1 50 1 16 8 100.00%
5 50 1 10 3 53.97%

10 50 1 14 8 74.43%
50 50 1 37 14 98.50%

5 1 2 5 1 52.53%
10 1 2 4 1 53.38%

5 5 2 7 1 53.47%
10 5 2 13 6 96.94%
50 5 2 5 0 53.52%

5 10 2 7 3 53.55%
10 10 2 13 4 53.82%
50 10 2 10 6 53.94%

5 50 2 16 6 100.00%
10 50 2 15 4 95.32%
50 50 2 19 7 100.00%

5 1 5 3 1 52.29%
10 1 5 2 1 52.25%
50 1 5 1 1 52.34%

5 5 5 8 3 53.28%
10 5 5 20 8 60.89%
50 5 5 6 5 53.44%

5 10 5 22 6 84.95%
10 10 5 22 8 57.62%
50 10 5 14 5 53.54%

5 50 5 15 7 100.00%
10 50 5 17 6 100.00%
50 50 5 10 4 53.94%

Table 1: Test Program Evaluation

5 CONCLUSIONS

An evolutionary algorithm for inducing programs was
presented. First, the method includes the ability to explicitly
specify registers either as operands or targets. Furthermore,
it relaxes the usual tree-based representation, resorting to
DAG. Finally, it couples a standard GP approach with a
database containing the assembly-level semantic associated
to DAG nodes.

Exploiting DAG and library the proposed approach is
extremely efficient and versatile. Candidate solutions are
translated into source-code programs that can be assembled
and linked using standard compilers. Such executable
programs allow a fast evaluation: millions of runs may be
performed in just a second.

Moreover, the approach is versatile. The macro library
allows changing the target µP and environment easily. The
approach was verified on three processors with different
instruction sets, different formalisms and different
conventions.

This method can be seen as a general enhancement of
standard GP, however it was specifically devised for
inducing test-program for µP cores, a critical area in modern
industry. Experimental results show its efficacy and
feasibility, thus authors are now actively applying it in the
electronic area.

References
[1] K. Batcher, C. Papachristou, “Instruction

Randomization Self Test For Processor Cores”,
Proceedings IEEE VLSI Test Symposium, 1999,
pp. 34-40

[2] L. Chen, S. Dey, “DEFUSE: A Deterministic
Functional Self-Test Methodology for Processors”,
IEEE VLSI Test Symposium, 2000, pp. 255-262

[3] F. Corno, M. Sonza Reorda, G. Squillero, M.
Violante, “On the Test of Microprocessor IP Cores,”
IEEE Conference on Design & Test in Europe, March
14-16, 2001

[4] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero,
“Effective Techniques for High-Level ATPG,” IEEE
Asian Test Symposium, November 20-21, 2001

[5] A. Fukunaga, A. Stechert, D. Mutz, “A genome
compiler for high performance genetic
programming”, Genetic Programming 1998:
Proceedings of the 3rd Annual Conference, 1998,
pp. 86-94

[6] S. Handley, “On the use of a directed acyclic graph to
represent a population of computer programs”,
Proceedings of the 1994 IEEE World Congress on
Computational Intelligence, 1994, pp 154-159

[7] R. M. Friedberg, “A Learning Machine: Part {I)”,
IBM Journal of Research and Development, 1958,
vol. 2, n. 1, pp 2-13

[8] S. Klahold, S. Frank, R. E. Keller, W. Banzhaf,
“Exploring the possibilites and restrictions of genetic
programming in Java bytecode”, Late Breaking
Papers at the Genetic Programming 1998
Conference, 1998

[9] J. R. Koza, “Genetic programming”, Encyclopedia of
Computer Science and Technology, vol. 39, Marcel-
Dekker, 1998, pp. 29-43

[10] E. Lukschandl, M. Holmlund, E. Moden, “Automatic
evolution of Java bytecode: First experience with the
Java virtual machine,” Late Breaking Papers at
EuroGP’98: the First European Workshop on Genetic
Programming, 1998, pp 14-16

[11] P. Nordin, “A compiling genetic programming system
that directly manipulates the machine code,”
Advances in Genetic Programming, 1994,
pp. 311-331

[12] J.L. Hennessy, D.A. Patterson, “DLX architecture”, in
Computer Architecture, a Quantitative Approach,
Morgan Kaufmann Publishers.

[13] C.A. Papachristou, F. Martin, M. Nourani,
“Microprocessor Based Testing for Core-Based
System on Chip”, ACM/IEEE Design Automation
Conference, 1999, pp. 586-591

[14] R. Poli, “Evolution of graph-like programs with
parallel distributed genetic programming”, Genetic
Algorithms: Proceedings of the 7th International
Conference, 1997, pp 346-353

[15] J. Shen, J. Abraham, D. Baker, T. Hurson, M.
Kinkade, “Functional verification of the Equator

MAP1000 microprocessor,” Proceedings 36th Design
Automation Conference, 1999, pp. 169 -174

[16] A. Samuel, “Some studies in machine learning using
the game of checkers”, IBM Journal of Research and
Development, 3(3), 1959, pp. 210–229

[17] R. Stallman, Using and Porting GNU CC, Free
Software Foundation, Cambridge MA, 02139, 1989

[18] SPARC International, The SPARC Architecture
Manual (Version 8). Prentice Hall, NJ, 1992

[19] N. Utamaphethai, R.D. Blanton and J.P. Shen,
“Superscalar Processor Validation at the
Microarchitecture Level,” 12th IEEE International
Conference on VLSI Design, 1999, pp. 300-305

