

High-Level Test

of Electronic Systems

Collaudo ad alto livello di Sistemi Elettronici

Gianluca Cumani

Dottorato di Ricerca

Ingegneria Informatica e dei Sistemi – XV Ciclo

Politecnico di Torino

I

Index

Index..I

Figure Index ..III

Table Index.. IV

1 Introduction... 1

1.1 VLSI Testing..1

1.2 Test generation...2

1.3 RT-Level Test ..4

1.4 Microprocessor Test...8

2 RT-Level Testability ... 12

2.1 RT-Level Fault Model ...12

2.1.1 RT-Level Single-bit Stuck-at Fault Model13

2.1.2 Gate-Level Correlation Rules ..15

2.1.2.1 Rule A ...15

2.1.2.2 Rule B ...16

2.1.2.3 Rule C ...16

2.1.2.4 Examples...17

2.2 RT-Level Fault Simulation Techniques...19

2.2.1 Fault Simulation Environment...20

2.2.1.1 General architecture ..20

2.2.1.2 The Fault List ..20

2.2.1.3 The Fault Simulator ..21

2.2.1.4 Fault Injection Strategy...22

2.3 RT-Level Fault Model Feasibility ...25

3 High-Level ATPG ... 29

3.1 ARPIA..31

3.2 Fault Model..32

3.3 Fault Simulation Technique...33

3.4 Algorithm...33

3.5 Experimental Evaluation..36

4 Microprocessor Test ... 40

II

4.1 A Semi-Automatic Test Program Generation Methodology41

4.1.1 Test Strategy ..42

4.1.2 Test Program Generation ...44

4.1.3 Algorithm...45

4.1.4 Genetic Algorithm ...48

4.1.5 Experimental Evaluations ..49

4.1.6 Methodology Limits...52

4.2 An Automatic Test Program Generation Methodology...................54

4.2.1 Test-program Generation ...56

4.2.2 Program Evaluation ...56

4.2.3 Assembly-Level Test-Program Induction....................................57

4.2.4 Directed-Acyclic-Graph Representation......................................58

4.2.5 Program Induction ...62

4.2.6 Auto Adaptation...64

4.2.7 Experimental Evaluation..65

4.2.7.1 i8051 ...66

4.2.7.2 DLX/pII...68

4.2.7.3 LEON P1754...72

5 Conclusions.. 75

6 References.. 79

III

Figure Index

Figure 1: System-On-a-Chip..8

Figure 2: RT-level Single-bit Stuck-at Fault Example ..14

Figure 3: Fault Simulator Algorithm ...21

Figure 4: Correlation without rules..27

Figure 5: Correlation with rules...27

Figure 6: Phase One Pseudo Code...34

Figure 7: Phase Two Pseudo Code ..35

Figure 8: Pseudo-code of the macro for the ADD instruction.42

Figure 9: RT-level Single bit Stuck-at Fault Example...43

Figure 10: Test Program Generation Architecture...45

Figure 11: Control-dependent fault detection phase pseudo-code...............................46

Figure 12: Data-dependent fault detection phase pseudo-code.47

Figure 13: Experimental setup for comparison purposes. ...50

Figure 14: Pipeline Effects...55

Figure 15: System Architecture ...56

Figure 16: A sequential instruction..59

Figure 17: DAG and Instruction library...60

Figure 18: Conditional Branch...61

Figure 19: Mutation Operands. ..63

Figure 20: Crossover Operand. ..64

Figure 21: Auto Adaptation. ..65

IV

Table Index

Table 1: Rule A application ...17

Table 2: Rule B application ...18

Table 3: Rule C application ...18

Table 4: Influence of the rules on fault coverage ..25

Table 5: Influence of the rules on correlation..26

Table 6: ARPIA Result ..36

Table 7: Comparison with ARTIST and ARPIA without Evolutionary Algorithm37

Table 8: Phase Two Effectiveness ...38

Table 9: 8051 description characteristics...49

Table 10: Genetic Algorithm Parameters. ...50

Table 11: Test Program generation from RT-level description.51

Table 12: Test Program generation from gate-level description.51

Table 13: i8051 Test Program Generator Parameters..67

Table 14: i8051 Experimental Results...67

Table 15: DLX Summary...69

Table 16: DLX Random Approach Summary ...70

Table 17: DLX Statement Coverage Breakdown ..71

Table 18: DLX Toggle Activity Breakdown ...72

Table 19: LEON Statement Coverage summary ...73

Table 20: LEON Statement Coverage Breakdown..73

 High Level Test of Electronic Systems - Introduction

1

1 Introduction

1.1 VLSI Testing

In the last decades, the advances in Very Large Scale of Integration (VLSI)

semiconductor technologies have caused the incredible development of electronic

systems. The reduction of device sizes makes now possible to fit increasingly larger

number of transistors onto a single chip. However, as chip density increases, the

probability of defects occurring in a chip increases as well.

Design and manufacturing failures are becoming an important part of the

microelectronics business, where complexity is growing rapidly. Failures can occur at

several points of a product life cycle, such as technology or product development and

qualification, yield learning, reliability improvement, system manufacture, and field

application.

The quality, reliability and cost of the product are directly related to the

intensity/level of testing of the product. For this reason, Integrated Circuits (ICs)

testing has gradually shifted from the final fabricated ICs to the design stage and

many Design for Testability (DFT) techniques have been developed to ease the testing

process [PJAV02].

The functionality of a combinational circuit can be verified by exhaustively

applying all possible input patterns to its inputs. The behavior of a sequential circuit,

instead, is based on the applied sequence of the input patterns, so, their functionality

can’t be verified by applying all possible input patterns. Testing involves generating

test patterns, applying them to the circuit, then analyzing the output response. Testing

falls into a number of categories depending upon the intended goal.

 High Level Test of Electronic Systems - Introduction

2

Structural test looks for faults that can occur in the physical structure of a

manufactured component (e.g., stuck-at faults).

Go/no go test determines whether or not a manufactured component is

functional. This test gets executed on every manufactured die and has a direct impact

on the cost (test equipment cost, testing time, etc.), so it should be as simple and swift

as possible.

 Parametric test checks a number of parameters, such as: voltage levels,

current levels, noise margin, propagation delays, capacitive coupling or cross talk and

maximum clock frequencies. These parameters are tested under a variety of working

conditions, such as temperature and supply voltage.

Path-delay or transition-delay techniques are extensions of stuck-at faults

testing. They have been developed to catch timing related defects.

IDDQ testing checks the most common defects in Complementary Metal Oxide

Semiconductor (CMOS) technology caused by the shrinking geometry and thinner

gate dielectric, such as bridging between different tracks and gateoxide shorts.

Diagnostic test, finally, is used during the debugging of a chip or board and

tries to identify and locate the fault in a failing chip or board.

1.2 Test generation

Physical circuit defects are often modeled as logic faults [PJAV02]. The

assumption being that any manufacturing defect will translate itself into an erroneous

logic value at a specified time. This assumption is called fault modeling. This makes

the problem of fault analysis independent of the technology. Fault modeling analyzes

the circuit’s behavior in the presence of faults caused by physical defects or

environmental influences and provides a basis for the fault simulation and test

generation.

Test pattern validation is the process of determining how well a test pattern

meets the fault coverage requirements. The fault coverage is defined as the ratio of the

number of faults that are detected and the total number of faults in the assumed fault

universe. Fault coverage computation is a very important step in the testing process. It

provides a measure of adequacy for a given test set.

 High Level Test of Electronic Systems - Introduction

3

The functionality of a combinational circuit can be verified by exhaustively

applying all possible input patterns to its inputs. For an N-input circuit, this requires

the application of 2N
 patterns. In a sequential circuit, the output of the circuit depends

not only on the inputs applied, but also on the state of the internal memory elements

of the circuit. An exhaustive test of a sequential circuit requires the application of

2N+M test patterns, where N and M are the number of inputs and registers/flip-flops of

the circuit respectively. As N and M increase, the test length expands exponentially.

To reduce the test pattern length, an alternative approach is required.

Test generation is the process of determining a set of stimuli necessary to test

a circuit. The computational cost of the test generation depends on the complexity of

the method. A test for a fault can be found by trying various input patterns until one

gives a different output so that the considered fault is found in the circuit.

Random Test Generation (RTG) is a simple process that involves only the

generation of random vectors. However, to achieve a high-quality test we need a large

set of random vectors. RTG works without taking into account the function or the

structure of the circuit to be tested.

In contrast, Deterministic Test Generation produces tests by processing a

model of the circuit. Deterministic test generation can be fault-independent or fault

oriented. Fault-independent test generation works without targeting individual faults.

One early approach in test generation was using the concept of boolean difference for

generating the test patterns. The boolean difference approach can be characterized as

algebraic. It manipulates circuit equations to generate test patterns. In the context of

VLSI systems, test generation by algebraic methods is too time-consuming; hence, the

algorithmic approaches are being used.

In fault-oriented process, tests are generated for specified faults of a fault

universe. The test generation methods use the topological gate-level description of the

circuit. The algorithmic approaches also use various mechanisms to trace sensitive

paths to propagate fault effects to primary outputs. They then back trace to the

primary inputs and assign logic values based on conditions set at the forward fault

propagation stage. The test generation methods generate test vectors for one fault at a

time. However, as the number of internal nodes in Circuit Under Test (CUT) increases,

 High Level Test of Electronic Systems - Introduction

4

the computation time in generating the input test patterns becomes enormous. In VLSI

systems the time required to generate the test patterns for the whole system to get full

fault coverage is quite high, for this reason the problem is partitioned into smaller

parts. The solution for each part is obtained and then combined into a solution for the

whole problem.

Traditionally, Automatic Test Pattern Generators (ATPGs) target the test

generation problem at the logic level. However, they can require large amounts of

computing time and resources to generate tests for even moderately sized sequential

circuits.

Computation time can be drastically reduced by mapping the Register Transfer

Level (RTL) signals of the circuit being tested to its corresponding gate-level nets.

Several methods have been reported which automatically use functional RTL

descriptions of the circuit that target detection of stuck-at faults in the circuit at the

logic level.

In recent years the ASIC design flow experienced radical changes. The ASIC

design flow is rapidly moving towards higher description levels. This increasing

demand for tools enabling the design of digital circuits at high levels of abstraction

already pushed the development of synthesis and simulation technologies.

At the same time technology advances allow integrating on a single chip entire

system, including memories and peripherals. The test of these devices is becoming a

major issue for manufacturing industries. For this reason we need an efficient and

versatile methodology for inducing test-programs starting from higher level

descriptions.

1.3 RT-Level Test

The common practice is to design, simulate and synthesize huge ASICs

entirely at the RT-level. For this reason high-level design for testability, testable

synthesis and test pattern generation are increasing their industrial relevance. During

ASIC development, designers would like to be able to foresee testability before

starting the logic synthesis process. However, despite many efforts in high-level

design for testability, testable synthesis and test pattern generation, tackling testability

 High Level Test of Electronic Systems - Introduction

5

at high levels is still an unsolved problem. In addition, there is an ever-increasing

demand on reducing time to market. With complexity skyrocketing and such a

competitive pressure, designing at high levels of abstraction has become more of a

necessity than an option.

The increasing complexity of electronic components may be faced only by

boosting designer productivity through a gradual shift towards higher abstraction

levels and to significant amounts of design reuse. Nowadays, most digital ASICs are

designed at the RT-level, thanks to the availability and maturity of HDL synthesis

tools. Other design activities, such as power estimation and testing, are lacking behind

this trend, and are still performed mainly at the gate-level.

In recent years, several research activities contributed to pushing testability

related issues to the RT-level, including the proposal of several fault models

[DGKe96] [TAZa99] [RiUc96], the development of fault simulators [FiFu00]

[FDKe98] or testability analyzers, and of some test pattern generators [FFSc98]

[CSSq00a] [FADe99].

The hardest theoretical barrier to the diffusion of test-related tools at the RT-

level is the lack of widely accepted fault models. Several variants of high level faults

(or testability metrics) have been proposed, and their relationship with stuck-at faults

has been shown, either experimentally or theoretically, but such results are generally

limited to some specific class of circuits. No single fault model is universally accepted,

since no comprehensive and general results, valid for all classes of circuits, are known

yet.

Most fault modeling approaches rely on high-level fault models for behavioral

HDL descriptions which have been developed by the current practice of software

testing [Beiz90] and extending them to cope with hardware descriptions. In this sense,

a high-level fault model corresponds to a metric that measures the goodness of a given

sequence of input vectors.

One of the most used fault models is the observability enhanced statement

coverage metric proposed in [DGKe96] and [FDKe98]. This fault model requires that

all statements in the VHDL description are executed at least once, and that their

effects are propagated to at least one primary output. Propagation is modeled

 High Level Test of Electronic Systems - Introduction

6

implicitly, by determining whether the faulty statement may influence the output

values but without hypothesizing any specific faulty value: in some cases, heuristics

are needed to resolve non-determinism, and the meaningfulness of the resulting fault

coverage is affected by these approximations. While this approach can be fruitfully

exploited for test pattern generation [FADe99] [CSSq00a], for fault simulation we

need more accurate results.

One of the most important technical barriers is the lack of efficient fault

simulators, once a fault model is chosen. Fault simulation algorithms for RT-level

descriptions are known since more than a decade, even if they mainly target structural

descriptions rather than behavioral ones, but commercial tools usually do not include

these capabilities. Classical algorithms are difficult to integrate in HDL simulators,

mainly due to the complexity and to the several peculiarities of HDL languages. Until

some fault model becomes widely accepted, this situation is not likely to change,

because CAD vendors have no good reason to invest yet.

In this work an approach is illustrated, that allows fault simulation at the RT-

level of VHDL descriptions, by interacting with a standard commercial VHDL

simulator. The approach is based on exploiting debugging mechanisms inherent with

the chosen VHDL simulator and exposed through the scripting language interface,

such as breakpoints, script and TCL programming, and signal traces, and allows an

accurate and fast simulation of faulty behaviors through a minimally invasive

procedure. Other approaches were formerly proposed in [RiUc96], where for each

fault a newly modified VHDL description was built, compiled, and simulated, and in

[FiFu00], where a single modified VHDL model foresaw all the possible single and

multiple fault locations and values. In our approach, VHDL descriptions are never

modified, so that simulation always proceeds at full speed for all the circuit except the

fault insertion point, and more complex VHDL constructs can be accepted at little

implementation cost.

In this work we thus adopt a particular instantiation of the observability

enhanced statement coverage metric, and in particular we model single stuck-at bit

faults on all assignment targets of the executed statements that respect a defined set of

rules. With this choice, a concrete faulty behavior is simulated, and fault propagation

 High Level Test of Electronic Systems - Introduction

7

can therefore be performed exactly, by computing the faulty machine evolution. This

fault model implies observability enhanced statement coverage, since it models one of

the possible fault classes on executed statements. We also define a series of rules to

identify redundant faults in the fault list, obtained using the proposed fault model, in

order to increase the correlation between the RT-level fault coverage and the Gate-

level one. Redundancies identification is based on the reduction of the RT-level fault

list taking into account analyzing the optimizations of the synthesis process, in order

to eliminate faults corresponding to part of the logic optimized away by the

synthesizer.

Another technical barrier is the lack of efficient algorithms to generate

effective test signals. As a matter of fact, at the present time even simulating RT-level

test signals is a challenging task. Fault simulation algorithms for RT-level designs are

known since more than a decade [ABFr90], but commercial tools usually don’t

include these capabilities. Furthermore, classical algorithms are difficult to integrate

in simulators, mainly due to the complexity and to the several peculiarities of

hardware description languages. Some prototypical fault simulators were proposed

[FiFu00] [FDKe98], but until some fault model becomes widely accepted EDA

industries have no good reason to invest, and this situation is not likely to change.

Even so, researchers and pioneering design groups already need test signals on

their RT-level designs. Many generators were proposed. Nevertheless, since any

attempt of backward justification must take into account all structural, behavioral and

timing specifications [FFGS99], traditional algorithms are almost unusable.

Researchers sometimes achieved good results, but they were generally limited to

specific classes of circuits. However, interesting successful results have been reported

using evolutionary algorithms [CSSq00a]. These approaches exploit natural evolution

principles to drive the search of effective patterns within the gigantic space of all

possible signal sequences. Evolutionary heuristics begin to appear a reasonable

alternative to traditional techniques.

 High Level Test of Electronic Systems - Introduction

8

1.4 Microprocessor Test

Technology advances allow integrating on a single chip an entire system,

including memories and peripherals. This new kind of devices is called Systems-On-a-

Chip (SOCs) and often includes complex cores, like microprocessors, MPEG

encoders/decoders and other dedicated blocks (Figure 1). Such cores are usually

provided by third parties and designers may include them into SOCs rather easily and

quickly.

 A core is a highly complex logic block. It is predictable, reusable, and fully

defined in terms of its behavior. System designers can purchase cores from core-

vendors and integrate them with their own user-defined logic to implement SOCs

more efficiently. Core-based SOCs have significant advantages: core exploitation

reduces the number of required discrete components, minimizing the total size and

cost of the end-product; furthermore, it greatly reduces time-to-market because of the

involved design re-use.

Figure 1: System-On-a-Chip

Microprocessor cores represent an important and widespread class of macros,

and they are a major challenge in the test arena. Not only is their complexity always

increasing, but also their specific characteristics intensify all existing difficulties. A

microprocessor embedded inside a SOC is harder to test since it might be harder to

PCI

C
P
U

Core

SRAM DSP

MPEG

ADC ADC

 High Level Test of Electronic Systems - Introduction

9

control and its behavior may be harder to observe. And design-for-testability

structures might be harder to insert, too.

Regarding microprocessors, test has traditionally been performed resorting to

functional approaches based on exciting functions and resources. The most canonical

one is described in [ThAb80]; however, this methodology involves a high amount of

manual work performed by skilled programmers, and does not provide any

quantitative measure about the attained gate-level fault coverage.

 [ShAb98] proposes a methodology to synthesize a self-test program for stuck-

at faults. The approach generates a sequence of instructions that enumerates all the

combination of the operations and systematically selects operands. However, users

need to determine the heuristics to assign values to instruction operands to achieve

high stuck-at fault coverage. In some cases, this might not be a trivial task.

[ChDe00] proposes DEFUSE, a deterministic method to generate test

programs able to reach good fault coverage on the ALU of a microprocessor, and to

compact the result. The approach is very effective with combinationally testable parts

(i.e., ALUs), but shows some limitation when hard-to-test sequential modules (e.g.,

control units) are addressed. On the other hand, [BaPa99] is based on generating

random sequences of instructions. It is able to attain a fairly high level of fault

coverage, however it assumes that all instructions are single-cycle and buses are never

floating. Both approaches require the insertion of BIST circuitry.

 On a microprocessor core, however, test solutions requiring massive chip-

level changes might not be exploitable. In particular, any solution based on a scan

approach may be inapplicable. First of all, the insertion of SOC-level test

architectures for allowing external access to the scan chains might be unpractical or

incompatible with other DFT structures. Furthermore, system designers may dislike

scan methodologies since they do not allow at-speed tests and they could degrade

performance.

Any test solution requiring the application of binary values directly to the

microprocessor pins may potentially cause problems to SOC designers. The ideal

strategy should consist in a mere assembly program and not rely on any special test

point to force values or observe behaviors. Such test program could be loaded in

 High Level Test of Electronic Systems - Introduction

10

RAM (e.g., resorting to DMA or other mechanisms), and executed to test the core. A

minimum effort could be needed to extract test result.

The requirements for such a test solution are analogous to the ones described

in [PMNo99] and [CSSV01]: a RAM memory of sufficient size should be available

on the SOC and easily accessible from the external. In this way, an ATE can load into

the memory the test program when required, and the processor core can execute it.

Test execution is always performed at-speed, independently on the speed of the

mechanisms used for loading the RAM and checking results.

Regarding test program generation, [BiMa95] proposes interesting techniques

for efficient compilation of self-test programs. But they left the responsibility for

generating the self-test programs to the test engineers.

Tackling verification, [AABH99] proposed a technique where the processor

itself generates test at run-time by self-modifying code. Similarly, [UBSh99] showed

a method for generating instruction sequences for validating the branch prediction

mechanism of the PowerPC604. Generated sequences are very effective, but

methodologies exploit a deep knowledge of the target processors and cannot be easily

applied on general designs.

[CSSV01] proposes a semi-automated approach to test program generation

based on a library of macros those parameters are chosen by a genetic algorithm. The

approach is shown able to attain reasonable fault coverage (85%) on a common

microprocessor core and requires no additional hardware or scan structures. However,

test generation relies on a library carefully compiled by experts.

[KPGZ02] describes a methodology that allows devising an effective test

program for a microprocessor core. However, the method requires that test engineers

create deterministic test patterns to excite the entire set of operations performed by

each component of the core.

Other possible approaches include the cross-compilation of available high-

level routines. However, despite the effortlessness, this is not a good solution. Due to

the intrinsic nature of the algorithms and of compiler strategies, these programs are

seldom able to excite all functionalities and do not take into account observability.

 High Level Test of Electronic Systems - Introduction

11

Although more effective and easier to generate, also random programs neglect

observability and will hardly detect hard-to-test faults. Moreover, their exploitation

could require huge memory space and overlong test times.

This document is organized as follows. Chapter 2 focuses on fault model and fault

simulation at the RT-level, and aims at exploiting the capabilities of VHDL simulators

to compute faulty responses. The simulator was implemented as a prototypical tool,

and experimental results show that simulation of a faulty circuit is no more costly than

simulation of the original circuit. The reliability of the fault coverage figures

computed at the RT-level is increased thanks to an analysis of inherent VHDL

redundancies, and by foreseeing classical synthesis optimizations. A set of “rules” is

used to compute a fault list that exhibits good correlation with stuck-at faults.

Chapter 3 describes a new simulation-based evolutionary test generator

(ARPIA) that adopts the innovative high-level fault model that enables efficient fault

simulation and guarantees good correlation with gate-level results described in

Chapter 2. The approach exploits an evolutionary algorithm to drive the search of

effective patterns within the gigantic space of all possible signal sequences. ARPIA

operates on register-transfer level VHDL descriptions and generates effective test

patterns. Experimental results show that the achieved results are comparable or better

than those obtained by high-level similar approaches or even by gate-level ones.

Chapter 4 describes two efficient and versatile approach to test-program

generation based on an evolutionary algorithm. The described methodologies are able

to tackle from microcontroller to complex pipelined designs.

 High Level Test of Electronic Systems - RT-Level Testability

12

2 RT-Level Testability

2.1 RT-Level Fault Model

One of the hardest theoretical barriers to the diffusion of test-related tools at

the RT-level is the lack of widely accepted fault models. Several variants of high level

faults (or testability metrics, as they are sometimes called) have been proposed, and

their relationships with stuck-at faults has been shown, either experimentally or

theoretically, but such results are generally limited to some specific class of circuits

(some approaches target control-dominated circuits [CSSq00a], others are more suited

to data-dominated ones [FADe99], or to circuits with few interactions with the

environment [FiFu00], and so on). No single fault model is universally accepted, since

no comprehensive and general results, valid for all classes of circuits, are known yet.

One of the most used fault models is the observability enhanced statement

coverage metric proposed in [DGKe96] and [FDKe98]. This fault model requires that

all statements in the VHDL description are executed at least once, and that their

effects are propagated to at least one primary output. Propagation is modeled

implicitly, by determining whether the faulty statement may influence the output

values but without hypothesizing any specific faulty value: in some cases, heuristics

are needed to resolve non-determinism, and the meaningfulness of the resulting fault

coverage is affected by these approximations. While this approach can be fruitfully

exploited for test pattern generation [FADe99] [CSSq00a], for fault simulation we

need more accurate results.

In this work we thus adopt a particular instantiation of the observability

enhanced statement coverage metric, and in particular we model single-bit stuck-at

faults on all assignment targets of the executed statements that respect a defined set of

 High Level Test of Electronic Systems - RT-Level Testability

13

rules. With this choice, a concrete faulty behavior is simulated, and fault propagation

can therefore be performed exactly, by computing the faulty machine evolution. This

fault model implies observability enhanced statement coverage, since it models one of

the possible fault classes on executed statements. We also define a series of rules to

identify redundant faults in the fault list, obtained using the proposed fault model, in

order to increase the correlation between the RT-level fault coverage and the Gate-

level one. Redundancies identification is based on the reduction of the RT-level fault

list taking into account analyzing the optimizations of the synthesis process, in order

to eliminate faults corresponding to part of the logic optimized away by the

synthesizer.

2.1.1 RT-Level Single-bit Stuck-at Fault Model

Fault models taken from software-testing [Beiz90] have three main advantages:

they are well known and quite standardized; they require little calculations, apart from

the complete simulation of the fault-free system; and they are already embedded in

some commercial tools. However, while such metrics may be useful to validate the

correctness of a design [CSSq00], they are usually inadequate to foresee the gate-level

fault coverage with high degree of accuracy.

To improve accuracy, some researchers extended software metrics to cope

with the peculiarities of hardware descriptions. Fallah et al. [FADe99] [FDKe98]

proposed Observability-Enhanced Statement Coverage. They define the concept of

tag as the possibility that an incorrect value is computed at a given location. Different

tags are first injected in any possible location and then propagated during the

simulation. The observability-enhanced statement coverage metric computes the

number of tags that reach an observable circuit output when the test pattern is applied.

We adopt observability-enhanced statement coverage and we refine it by using

explicit RT-Level single-bit stuck-at’s instead of tags. An RT-level single-bit stuck-at

fault is defined as a single-bit stuck-at in the effect of an RT-level assignment

operation: when a fault is present, the affected object (signal or variable target of an

assignment statement) loads the correct value, except for one bit that remains stuck to

0 or 1.

 High Level Test of Electronic Systems - RT-Level Testability

14

As in [DGKe96], faults are single and permanent: only one fault is inserted at

a time and the fault effect is present during the whole simulation. The RT-Level

single-bit stuck-at fault model does not explicitly consider control-flow faults, such as

stuck-at-true or stuck-at-false, as [RiUc96] does.

In more details:

• For bit signals or variables, the fault forces the value of 0 or 1 regardless

the actual value. No other values (e.g., ‘Z’) are considered.

• In bit vector signals or variables, each single element is considered

separately as a bit.

• Integer signals or variables are translated into the equivalent bit vectors

according to synthesis conventions. Range checks are neglected in the

resulting vector.

• Enumerated signals or variables are translated into integers and bounds

are ignored. If a fault forces an enumerated object to an illegal value

causing the simulator to stop, it is marked as detected.

• Faults on input ports are taken into account by considering the operation

of setting an external value to a primary input as an implicit assignment

operation.

• Concurrent expressions are translated into their equivalent processes.

• VHDL hierarchy is flattened, thus a process instantiated more than once

is seen as multiple processes.

addr <= (tail + reg1) mod 2**8;

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 1 0 1 1 0 11

Figure 2: RT-level Single-bit Stuck-at Fault Example

 High Level Test of Electronic Systems - RT-Level Testability

15

Figure 2 shows the example of an RT-level single-bit stuck-at fault. The fault

affects the third bit of the assignment operation, and modifies the result of the

expression, after it has been computed and before it is assigned to the target signal.

The faulty signal is updated as usual, according to VHDL propagation rules, but with

a faulty value. Other assignments of the same signal are assumed to be fault-free,

since stuck-at faults on the same signal but on different statements are considered

different.

2.1.2 Gate-Level Correlation Rules

During synthesis the RT level VHDL description is optimized in order to

create an efficient gate-level design. The optimization process analyzes the VHDL

description and simplifies all logic eliminating redundancies. In this phase some RT

level stuck-at faults lose their correspondent gate-level faults. The elimination of these

gate-level faults generates a discrepancy between RT and gate-fault coverage figures.

In order to prevent this discrepancy is necessary to identify which parts of the logic

described at the RT-level disappear during the optimization phase of the synthesis

process and to eliminate the associated faults from the fault list.

The logical elements that are eliminated during optimization process are:

• assignment of constant values to a signal or variable;

• signals or variables with only few bits actually used in the system.

Another discrepancy is introduced from the different approach of the RT-level

fault simulation and the gate-level one. In the gate-level fault simulation the reset

signal of the system is considered fault-free, so no faults are simulated in this part. To

prevent the difference between the two fault simulation methodologies, the RT-level

faults concerning the VHDL part executed only when the reset signal is active must

be eliminated.

Those concepts are formalized by the following set of rules.

2.1.2.1 Rule A

When a constant value is written in a variable or a signal, all the logic that was

used to accomplish the constant part of the operation is reduced to a set of wires

 High Level Test of Electronic Systems - RT-Level Testability

16

connected directly to the flip-flop. For this reason the only faults identifiable at gate-

level are the ones stuck-at with a value different from the constant one.

In order to identify such useless faults it’s necessary to:

• identify faults concerning variables or signals destination of an

assignment instruction;

• determine if all or some of the bits of the second term of the instruction

are constant, or an operation with a constant result, and calculate its

value;

• eliminate the faults on the bit whose stuck-at value is equal to the

constant value at the same bit.

2.1.2.2 Rule B

Sometimes in the VHDL description there are variables or constants that

have only a few bits really useful for the system. During the optimization process

the size of this variables or signals are reduced to the number of bit really useful.

All the faults concerning the erased bits must be eliminated from the fault list.

In order to identify such useless faults is necessary to:

• determine variables or signals that are only used in conditional

expressions;

• determine for any conditional expression if the second term is a constant,

or an operation between constants, and calculate its value;

• calculate the subset of bit values common to the various constants;

• eliminate the faults on the bits whose stuck-at value is equal to the subset

value at the same bit;

2.1.2.3 Rule C

At gate-level all the logic connected to the reset signal is considered fault-free

for this reason all the faults concerning those instructions must be eliminate from the

fault list. This hypothesis is needed due to the limitations of VHDL models, that

cannot describe the correct behavior of a circuit if it fails to be correctly initialized

(unknown valued don’t propagate correctly across conditional statements). To provide

 High Level Test of Electronic Systems - RT-Level Testability

17

a meaningful comparison, we do not consider faults in the reset logic, either at the

RT- or gate- levels.

In order to identify such useless faults is necessary to:

• determine the part of the VHDL source executable only when reset

signal is active;

• eliminate faults concerning variables or signals destination of an

assignment in this part;

2.1.2.4 Examples

To illustrate some examples of application of the above rules, see Tables 1 to 3.

The tables report a sample VHDL statement or fragment, the information about faults

to be injected (source line, signal or variable name, bit position of the fault and stuck-

at value), as well as the indication whether the application of the rule eliminated the

fault from the fault list.

VHDL instruction eliminated source line name bit stuck-at value
Yes 29 STATE 0 0
No 29 STATE 0 1
Yes 29 STATE 1 0
No 29 STATE 1 1
Yes 29 STATE 2 0

State<=000;

No 29 STATE 2 1

Table 1: Rule A application

In Table 1, the assignment of the constant “000” to signal “State” is

considered. All stuck-at-0 faults on the bits of State, in injected at this instruction, are

untestable since they are not excited. According to Rule A, they are excluded from the

fault list, while stuck-at-1 faults will be injected.

 High Level Test of Electronic Systems - RT-Level Testability

18

VHDL source eliminated source line name bit stuck-at value
Yes 29 TEMP 0 0
Yes 29 TEMP 0 1
Yes 29 TEMP 1 0
Yes 29 TEMP 1 1
No 29 TEMP 2 0

temp= bit_vector(2 downto 0);
……..

temp := DATA_IN+REG
……

if (temp >= 0) then
No 29 TEMP 2 1

Table 2: Rule B application

In Table 2 a different case is considered, where the value of variable “temp” is

only used in a greater-than-zero comparison. In such a situation, only the bit sign of

the variable is significant, and all faults on lower order bits are deleted by Rule B

since they are not observable. As a matter of fact, synthesis tools are able to detect

this situation, and do not generate the logic associated to lower order bits: we are

effectively predicting that some RT-level faults have no physical meaning since no

gate-level equivalent will be synthesized.

VHDL source eliminated Source line name bit stuck-at value
yes 32 STATE 0 0
yes 32 STATE 0 1
yes 32 STATE 1 0
yes 32 STATE 1 1
no 34 STATE 0 0

 reset='1' then
 state:=a;

 elsif
 state:=b;

no 34 STATE 0 1

Table 3: Rule C application

Finally, Table 3 shows an application of Rule C, where all RT-level faults

dominated by the reset signal are deleted.

 High Level Test of Electronic Systems - RT-Level Testability

19

2.2 RT-Level Fault Simulation Techniques

Fault simulation at the RT-level is an open issue that is expected to gain high

industrial relevance with the advent of high level testability flows and that is proven

to yield good coverage with actual defects [SGTT00].

One of the most important technical barriers is the lack of efficient fault

simulators, once a fault model is chosen. Fault simulation algorithms for RT-level

designs are known since more than a decade, even if they mainly target structural-

style descriptions rather than behavioral-style ones, but commercial tools usually

don’t include these capabilities. Classical algorithms are difficult to integrate in HDL

simulators, mainly due to the complexity and to the several peculiarities of HDL

languages. Until some fault model becomes widely accepted, this situation is not

likely to change, because CAD vendor have no good reason to invest yet.

In this work an approach is described, that allows fault simulation at the RT-

level of VHDL descriptions, by interacting with a standard commercial VHDL

simulator. The approach is based on exploiting debugging mechanisms inherent with

the chosen VHDL simulator and exposed through the scripting language interface,

such as breakpoints, script and TCL programming, and signal traces, and allows an

accurate and fast simulation of faulty behaviors through a minimally invasive

procedure. Other approaches were formerly proposed in [RiUc96], where for each

fault a newly modified VHDL description was built, compiled, and simulated, and in

[FiFu00], where a single modified VHDL model foresaw all the possible single and

multiple fault locations and values. In our approach, VHDL descriptions are never

modified, so that simulation always proceeds at full speed for all the circuit except the

fault insertion point, and more complex VHDL constructs can be accepted at little

implementation cost.

 High Level Test of Electronic Systems - RT-Level Testability

20

2.2.1 Fault Simulation Environment

2.2.1.1 General architecture

In order to verify the feasibility of the proposed fault simulation technique, we

developed a prototype implementation of a Fault Simulator that, starting from a

VHDL description at the RT-level, a Fault List of single-bit stuck-at faults and a Test

Pattern, creates a list of detected and undetected faults.

To perform Fault Simulation we use a serial fault simulation strategy, and we

simulate the good and each faulty machine, comparing their outputs. To run the

simulations, the Test Pattern is first transformed to a set of commands that force the

correct waveform for input signals, and the Fault List is transformed to a set of script

commands for injecting faults during simulation.

 Starting from the above considerations we developed Fault Detector System

composed of the following elements:

• Fault List Generator: this tool extracts information (signal/variable

names, hierarchy, type and source code line) from the analysis of VHDL

Source code and creates the Fault List based on the proposed fault model.

• Fault Simulator: this tool is composed of a set of routines interacting

with the VHDL simulator. It simulates the circuit described by the

VHDL Source using the Test Pattern and injects the faults present in the

Fault List, creating a list of Detected Faults.

2.2.1.2 The Fault List

As a preliminary step, for each design we extract a complete list of faults, by

analyzing the VHDL source code and enumerating faults on input signals and on

internal signals and variables. We analyze the code with the help of the LEDA

VHDL*Verilog System database and of ModelSim EE 5.1g scripts, and we obtain

input signal names and types and assignment instructions with their VHDL source

lines. By parsing assignment instructions we determine the signal or variable name

and type. For hierarchical descriptions, the above analysis is preceded by flattening of

the hierarchy, where multiply instantiated processes are considered different.

 High Level Test of Electronic Systems - RT-Level Testability

21

Information obtained by the VHDL source code analysis is collected in the

Fault List. For each bit of each signal and variable we generate two Fault List entries,

for the stuck-at ‘1’ and stuck-at ‘0’ faults, containing the above information. Each

fault is described by a tuple composed of: VHDL source file name, source line (not

relevant for input faults), the target type (input, signal or variable), target

hierarchical name, bit position, stuck-at value and some fault detection information.

After simulation, each entry is updated with the indication of fault status (detected or

undetected) and the number of the pattern detected it.

2.2.1.3 The Fault Simulator

The Fault Simulator is the core of the Fault Detector Architecture. This part of

the tool injects faults according to a serial fault simulation methodology: for each fault,

the entire test pattern is simulated, and outputs are compared. Several optimizations

can be implemented over this basic scheme, and will be the subject of further work,

while the current implementation already proves the feasibility of the approach. A

pseudo code description of the Fault Simulator is reported in Figure 3.

ReadFaultList();
ReadTestPatterns();
InitializeSimulator();
/* simulate the good machine */
Simulate(good);
StoreOutputs(good);
for(each fault)
{
 /* simulate the faulty machine */
 InjectFault(fault);
 Simulate(fault);
 if (CompareOutputs(good, fault) == DIFFER)
 UpdateFaultList(fault, DETECTED);
 else
 UpdateFaultList(fault, UNDETECTED);
}

Figure 3: Fault Simulator Algorithm

 High Level Test of Electronic Systems - RT-Level Testability

22

2.2.1.4 Fault Injection Strategy

The core of the Fault Simulator is the Fault Injection procedure. Several

different approaches for injection of permanent faults in VHDL descriptions are

possible, some of which have already been proposed in the literature:

• Changing the VHDL code: original VHDL instructions are enriched by

the code necessary to inject the fault and new input signals are added to

control fault injection [FiFu00]. This technique significantly slows down

simulation, because the additional source lines are always simulated, also

when they are not used to inject the fault.

• Modifying the simulator: the code necessary to inject and detect faults

is added into simulator source code. This technique is probably the

fastest fault injection methodology, and promises to simulate each faulty

machine as fast as the fault free circuit, and is extremely powerful,

because one may change any parameter or register during simulation.

The problem of this technique is the availability of the source code of a

good simulator.

• Interacting with the simulator: faults are injected through the simulator

user interface using simulation commands. This technique is less

powerful than modifying the simulator, but during simulation it is nearly

as fast. In fact, no additional source code is present and commands are

active only when the fault is injected.

Our fault injection system belongs to the third methodology. Fault injection is

made possible by creating routines that change the target signal/variable bit value

during simulation, using the Simulator Scripting Language (TCL), when a given

target assignment instruction is executed.

The chosen fault injection methodology must face various issues derived from

the fault model, from VHDL semantics and from the simulator itself.

The chosen fault model considers both input signals and internal signals or

variables: while the fault model definition treats them uniformly, from the

implementation point of view they are different. The former ones, subject of no

 High Level Test of Electronic Systems - RT-Level Testability

23

assignment instruction, do not correspond to a source code line identifiable as target

during the simulation, while the latter may be written several times in the VHDL

description, thus preventing a statically “forced” assignment of the faulty bit. Two

different fault injection methods must therefore be used: one for input signals and one

for internal signals or variables. Input signals can be modified before simulation starts,

but internal variables and signals must be changed during simulation, whenever the

target assignment instruction is executed.

VHDL semantics specify that signals change at wait statements and variables

change immediately. Consequently internal signals and variables must be treated in

different ways during fault injection. Variables can be changed immediately after the

execution of an assignment instruction; signals instead may be changed only just

before the execution of the wait statement (or of the last line of the process, if the wait

statement is implicit).

The simulator limits interaction to the commands exposed through the

scripting user interface. All the commands necessary to inject the fault must therefore

respect the syntax and the timing of the simulator. Specifically, the ModelSim

simulator accepts simulation commands and TCL routines. In our case, fault injection

is performed through insertion of appropriate breakpoints at target instructions.

Due to the above restrictions, we use two different approaches to inject faults:

pre-simulation fault injection for input signal faults and run-time fault injection for

internal faults. Fortunately, no distinction needs to be made concerning the data type

of the involved signals and variables, since the simulator interface allows us to treat

all objects as bit vectors, regardless of their original type (bit, bit vector, integer,

enumerated …).

Pre-simulation fault injection consists of changing the target bit value of an

input signal before simulation starts (during the waveform definition phase) forcing it

at the stuck-at value. Pre-simulation fault injection is fast as a normal simulation

because no delay is added to inject faults.

Run-time fault injection consists of changing the target bit value of the

assignment instruction selected during the simulation. Breakpoints are used in this

case: before simulation starts, a breakpoint is set on the VHDL source line where fault

 High Level Test of Electronic Systems - RT-Level Testability

24

is located. The Fault List file contains all the information necessary to inject the fault.

Embedded in the breakpoint instruction there are two different routines depending on

the type (variable or signal) of the assignment instruction target.

If the target is a variable, the instruction is executed, then the given bit of the

variable is changed and simulation is continued.

If the target is a signal a more sophisticated double-breakpoint technique is

needed, to avoid modifying the signal values in advance with respect to VHDL signal

propagation semantics. In the double-breakpoint technique, a breakpoint is set at the

source code line where the wait statement or the last instruction is placed and

simulation continues without modifying anything. This new breakpoint, that will be

activated only when the wait statement (explicit or implicit) is about to be executed,

forces the given bit of the signal to the stuck-at value and unsets itself before

continuing the simulation.

Run-time fault injection using the breakpoint technique slows down simulation

by a really negligible amount. In fact, breakpoints are optimized by the simulator and

impact on the simulation only when the target statements are executed, and the fault is

injected.

 High Level Test of Electronic Systems - RT-Level Testability

25

2.3 RT-Level Fault Model Feasibility

In order to verify the feasibility of the RT Level Single-bit Stuck-at Fault

Model, we used a prototype implementation of a Fault Simulator based on the

techniques described in the previous Sections.

RT-level Fault Coverage circuit sequence
no rules rule A rules A & B rules A & B & C

Stuck-at
Fault Coverage

#1 54.23% 95.06% 95.06% 97.37% 98.06%
#2 50.00% 87.65% 87.65% 90.79% 98.45% B01
#3 52.11% 91.36% 91.36% 93.42% 96.51%
#1 46.43% 90.70% 90.70% 94.87% 99.33%
#2 42.86% 83.72% 83.72% 84.62% 99.33% B02
#3 42.86% 83.72% 83.72% 84.62% 99.33%
#1 52.94% 67.61% 67.61% 70.49% 73.84%
#2 50.37% 64.32% 64.32% 66.67% 74.82% B03
#3 48.53% 61.97% 61.97% 63.93% 74.45%
#1 47.16% 55.85% 71.59% 84.22% 91.51%
#2 49.55% 58.69% 75.23% 88.50% 91.51% B04
#3 49.55% 58.69% 75.23% 88.50% 91.92%
#1 32.87% 92.73% 92.73% 98.02% 97.35%
#2 31.94% 90.91% 90.91% 96.04% 97.35% B06
#3 31.94% 90.91% 90.91% 96.04% 97.35%
#1 50.00% 66.93% 66.93% 75.71% 58.28%
#2 49.25% 65.76% 65.76% 74.29% 57.28% B07
#3 52.00% 66.93% 66.93% 79.52% 58.28%
#1 45.75% 60.63% 60.63% 81.90% 82.03%
#2 51.42% 68.13% 68.13% 91.38% 98.15% B08
#3 54.72% 72.50% 72.50% 98.28% 98.26%
#1 38.89% 53.41% 53.41% 59.28% 48.89%
#2 47.66% 65.46% 65.46% 72.85% 90.56% B09
#3 50.00% 68.67% 68.67% 76.02% 91.22%
#1 45.36% 69.90% 69.90% 74.43% 77.70%
#2 51.32% 79.08% 79.08% 84.66% 92.22% B10
#3 51.66% 79.59% 79.59% 85.23% 92.13%
#1 56.33% 64.79% 64.79% 73.91% 79.99%
#2 54.69% 62.91% 62.91% 71.74% 81.00% B11
#3 62.86% 72.30% 72.30% 82.61% 84.52%

Table 4: Influence of the rules on fault coverage

 High Level Test of Electronic Systems - RT-Level Testability

26

This fault simulation environment allows us to compute fault coverage figures

at the RT-level with a minimal CPU time overhead, since the VHDL model of faulty

circuits is simulated at the same speed as the fault-free model. The only time penalty

is at fault injection time instants, where some breakpoints are activated and TCL

commands to modify values are executed.

To perform our experiments we selected a subset of the ITC’99 VHDL

benchmarks [CSSq00]. We applied the rules described before to the fault lists

extracted for the chosen subset of benchmarks, and fault simulated the optimized one

with three samples of input sequences:

• a pseudo-random sequence (#1), consisting of 500 vectors with up to 5

circuit reset commands;

• a test sequence (#2) developed by a simulation-based gate-level

developed ATPG [CPRS96];

• a test sequence (#3) generated by a state of the art commercial

topological ATPG working at the gate-level.

Table 4 reports detailed results comparing the RT-level fault coverage figures

obtained with the fault model we propose, with gate-level stuck-at fault coverage. The

table shows that the application of the rules improves the predictive value of RT-level

fault coverage figures.

 Correlation coefficient

Without rules -0.1323
Rule A 0.6099

Rule A & B 0.7293
Rule A & B & C 0.7753

Table 5: Influence of the rules on correlation

Synthetic information is given in Table 5 and represented graphically in Figure

4 and Figure 5. The correlation coefficient between RT- and gate-level fault coverage

figures is incredibly low if no rules are applied, thus exposing the difficulties of

modeling at the RT-level faulty behaviors. However, as we apply the rules, we are

able to reach a correlation coefficient around 77%. Rules A and C are more general,

and give good results on all benchmarks. Rule B, on the other hand, contributes

 High Level Test of Electronic Systems - RT-Level Testability

27

significantly only for benchmarks that have poorly observable assignment statements,

such as b04.

without rules

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

RT

G
at

e

Figure 4: Correlation without rules

Rule A & B & C

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

RT

G
at

e

Figure 5: Correlation with rules

The experimental results show that the application of the redundancy

identification rules allows the RT-level fault coverage to become more and more

 High Level Test of Electronic Systems - RT-Level Testability

28

correlated to the gate-level one. Circuits have an increment of fault coverage and an

improvement of the global correlation value.

An exception is the circuit b07; in this case the presence of a ROM decreases

the global correlation.

 High Level Test of Electronic Systems - High-Level ATPG

29

3 High-Level ATPG

High-level test pattern generation is increasing its industrial relevance

[PITC99]. Designers would like to foresee an ASIC testability before starting its logic

synthesis. The design practice is pushing the insertion of design for testability

structures up to the RT-level, and their effectiveness should be evaluated as soon as

possible. In addition, it has been increasingly observed that gate-level sequential

automatic test pattern generation techniques may take unacceptable amounts of

computing time and resources to tackle larger sequential circuits unless design-for-

testability structures are used. High-level ATPG tools are expected to exploit compact

information about design structure and behavior, and to generate high-quality test

sequences more efficiently. Moreover, it is supposed that high-level generated test

benches could be able to detect faults that would be very hard for gate-level ATPGs

[SGTT00].

Tackling test issues above the gate-level is a hard task, and the lack of a fault

model is one of the hardest theoretical barriers.

Code-coverage based fault models, deriving from the software testing field,

may seem suitable to be applied on HDL descriptions. However, coverage metrics

such as line/block coverage, branch/conditional coverage, expression coverage and

path coverage lack of direct relationships with gate-level stuck-at faults, and their

applicability in the field of test is difficult. Other considerable difficulties stem from

the large amount of concurrency, from the complexity of timing schemes and from the

combined presence of behavioral and structural description styles. But, definitely, the

main problem with code-coverage based fault models is probably the lack of an

explicit observability concept. Coverage metrics only consider reachability, that is

 High Level Test of Electronic Systems - High-Level ATPG

30

like fault controllability in the gate-level domain. However, any ATPG should tackle

faulty-behavior observation as well [DGke96].

[RLJh98] presents TAO, a two-pass approach using a symbolic RTL test

generator. The proposed testing paradigm involves writing path equations for modules,

given the RTL connectivity, and solving them to obtain regular expressions for

control paths.

Probably, the most successful proposal of a hardware-related high-level fault

model is Observability-Enhanced Statement Coverage [FDKe98]. It introduces the

concept of tag as the possibility that an incorrect value is computed at a given location,

thus approximating the effects of fault propagation. Since this fault model does not

assume any specific fault effect, its generality prevents explicit fault simulation.

The first ATPG exploiting Observability-Enhanced Statement Coverage was

presented in [FADe99]. The vector generation procedure is based on hybrid linear

programming and Boolean satisfiability methods.

ARTIST, a different RT-level ATPG exploiting high-level information to

reach high code-coverage figures, was presented in [CSSq00]. Differently from

[FADe99], ARTIST is a simulation-based approach. It is based on an evolutionary

algorithm coupled with a commercial VHDL simulator, and due to the adoption of a

commercial tool, it is able to produce sequences for general synthesizable VHDL

description, with few limitations in complexity and characteristics, and it does not

require any effort for re-modeling circuits or extracting special information. However,

neglecting observability, sequences generated by ARTIST are not optimized for test

purpose.

In [CSSq00a], ARTIST code-coverage metric was augmented with simplified

observability. Fault-coverage figures dramatically increased, but the lack of a real

fault model prevented the usage of a fault-dropping mechanism. ARTIST was given

the goal to increase an observability measure, without meaningful stopping condition.

Thus, the approach was not suitable for larger designs.

In [CCSS00] an extension of observability-enhanced statement coverage was

proposed. In the new model, explicit RT-level assignment single-bit stuck-at’s are

used instead of generic tags. An RT-level assignment single-bit stuck-at fault is

 High Level Test of Electronic Systems - High-Level ATPG

31

defined as a single-bit stuck-at in the effect of an RT-level assignment operation:

when a fault is present, the affected object (signal or variable target of an assignment

statement) loads the correct value, except for one bit that is forced to 0 or 1.

Experimental figures show that this model is highly correlated with gate-level

coverage.

In [FFFFS01] Ferrara et al. presented BEHATE, an RT-level tool based on a

metric called bit-coverage, close to the RT-level assignment single-bit. Although the

paper is aimed at functional verification, experimental results show a strong relation

between high- and gate-level faults.

[CCSS00a] shows a simulation techniques based on simulation command

scripts that allows efficient exploitation of RT-level assignment single-bit faults.

Using the Tcl interface of a commercial simulator, the simulation of each faulty

circuit is shown no more costly than simulation of the original circuit.

This Chapter describes ARPIA, a high-level evolutionary automatic test

signals generator. Experimental results gathered using the prototypical

implementation is remarkable. The effectiveness of the generated test signals is at

least comparable with (and in several cases higher than) that of previously proposed

approaches. Additionally, thanks to the evolutionary algorithm and to a fault dropping

mechanism, computational requirements of the new system are lower.

3.1 ARPIA

ARPIA is a simulation-based evolutionary test signals generator. Being an

evolutionary algorithm, it evolves a population seeking fitter individuals. But, since

individuals are test sequences for a digital circuit, the fitness measures the sequence

ability to detect faults in the design. And it is computed by simulation. Given a fault

model, the fault coverage is defined as the percentage of faults that the test sequence

is able to detect. Thus, the goal of ARPIA can be rephrased as “generate a sequence of

signals that attains maximum fault coverage.”

ARPIA shares the same philosophy with [CSSq00a]. They are both

simulation-based approaches, and individuals are evaluated resorting to an RT-level

fault simulator. However, the two methodologies exploit different fault models,

 High Level Test of Electronic Systems - High-Level ATPG

32

different fault simulation techniques and different evolutionary algorithms. Next

Sections detail these three key points.

3.2 Fault Model

The RT-level single-bit stuck-at fault model was presented in [CCSS00] and

described in Section 2.1. In this model, a fault is defined as a single-bit stuck-at in the

effect of an RT-level assignment operation: when a fault is present, the affected object

(signal or variable target of an assignment statement) loads the correct value, except

for one bit that remains stuck to 0 or 1.

Faults are single and permanent: only one fault is inserted at a time and the

fault effect is present during the whole simulation. The RT-Level single-bit stuck-at

fault model does not explicitly consider control-flow faults, such as stuck-at-true or

stuck-at-false.

Initially, the Fault List contains the list of all RT-Level single-bit stuck-at

faults. However, during synthesis the RT level VHDL description is optimized in

order to create an efficient gate-level design. The optimization process analyzes the

VHDL description and simplifies all logic eliminating redundancies. In this phase

some RT-level stuck-at faults lose their correspondent gate-level faults. In order to

prevent this discrepancy is necessary to identify which parts of the logic described at

the RT-level disappear during the optimization phase of the synthesis process and to

eliminate the associated faults from the Fault List.

To perform Fault Simulation a serial fault simulation strategy is adopted. The

good and each faulty machine are simulated, comparing their outputs. A fault is

marked as detected, if it produces a difference on a Primary Outputs of the circuit at

the end of a clock cycle. To run the simulations, the Test Pattern is first transformed

to a set of commands that force the correct waveform for input signals, and the Fault

List is transformed to a set of script commands for injecting faults during simulation.

Fault injection is made possible by creating routines that change the target

signal/variable bit value during simulation, using the simulator scripting language

(Tcl), when a given target assignment instruction is executed. The fault injection

 High Level Test of Electronic Systems - High-Level ATPG

33

procedures must face various issues derived from the fault model, from VHDL

Semantics and from the simulator itself.

Further details can be found in Section 2.1.

3.3 Fault Simulation Technique

Fault simulation is made possible by creating routines that change the target

signal/variable bit value during simulation, using the simulator scripting language

(Tcl), when a given target assignment instruction is executed. The fault injection

procedures, presented in [CCSS00a] and described in Section 2.2, must face various

issues derived from the fault model, from VHDL semantics and from the simulator

itself.

This fault simulation environment allows us to compute fault coverage figures

at the RT-level with a minimal CPU time overhead, since the VHDL model of faulty

circuits is simulated at the same speed as the fault-free model. The main time penalty

is at fault activation time instants, where some breakpoints are set and TCL

commands to modify values are executed.

3.4 Algorithm

A fault can be marked as tested only when it is both excited and observed.

Given a fault, the target of the whole process is first to force the corresponding bit to a

value that make the fault visible (excitation), then to propagate the fault effects to

some primary output (observation).

The two problems are tackled separately, with two different strategies. Indeed,

test generation is performed in three phases. The first is aimed at exciting faults, the

second tackle observation, while the third dynamically optimize the fault list.

The goal of the first phase is to produce a set of signals able to excite an

untested fault. The first phase implements a simple first-improvement hill climber

(Figure 6). The local search procedure starts with a random sequence of given length

L. In each step, a new sequence is generated by randomly mutating the current one. If

the new sequence excites a larger number of untested faults, it becomes the current

 High Level Test of Electronic Systems - High-Level ATPG

34

one. Otherwise it is discarded. The process ends whenever the current sequence is

able to excite at least k fault, or after a predefined amount of useless steps. It is worth

noting that the number of excited faults is computed over the untested faults only.

current_sequence = random_sequence(L);
steady_state_factor = 0;
do
{
 new_sequence = mutate(current_sequence);
 if(excited_faults(new_sequence) >
excited_faults(current_sequence)) {
 current_sequence = new_sequence;
 steady_state_factor = 0;
 } else {
 increase(steady_state_factor);
 }
} while(excited_faults(current_sequence) == 0 &&
 steady_state_factor < steady_state_limit)

Figure 6: Phase One Pseudo Code

Three mutations are currently implemented by ARPIA: add, delete and change.

The first two respectively add and delete a vector of input signals from the test

sequence. The last one randomly changes a vector of input signals in the sequence.

When a test sequence able to excite a sufficient number of faults is found, it is

transferred to the second phase together with the excited faults. The goal of the second

phase is to observe each single fault in the excited set. This stage exploits an

evolutionary algorithm similar to an evolution strategy [BHSc91].

First, a target fault ft is selected from the excited set. Then, a population of P

sequences is created by mutating the original sequence and evolved using a (P+P)

strategy. In every evolution step, P new individuals are generated by mutating the P

original ones (each sequence generates exactly one new sequence). The P fitter

individuals are selected for survival among the 2P. The same three mutation operators

of the first phase are adopted.

In the second phase, given a target fault ft, the fitness measures how far a

sequence is able to propagate ft effects. More precisely, it is the maximum number of

 High Level Test of Electronic Systems - High-Level ATPG

35

differences caused by the fault during the application of a single vector of signals of

the test sequence (1).

∑∈
=

objects
Svt objectbitsdifferentMAXfStwoevaluation)(_),(_ (1)

The evolution is halted whenever ft is detected or after a certain amount of

generations. The pseudo code is shown in Figure 7.

The second phase is iterated until all faults in the excited set have been tested

or aborted.

for t = 1 to P {
 population[t] = mutate(starting_sequence);
}
generations = 0;
success = 0;

do
{
 generations = generations + 1;
 for t = 1 to P {
 population[P + t] = mutate(population[t]);
 if(tested(ft, pupulation[t])
 success = 1;
 }
 sort(population);
} while(not success && generations < generations_limit);

Figure 7: Phase Two Pseudo Code

The evolution-strategy approach was chosen because of the complexity of the

encoding. Individuals are sequence of vectors. Each vector of signals is simulated in a

clock cycle. Circuits contain memory elements, thus the behavior in a clock cycle

depends both on current input signals and previous ones. The effect of a traditional

recombination operator, like the uniform crossover, can be very similar to a complete

random mutation at phenotypic level. We shun any risk and exploit an algorithm that

“omits recombination since its philosophy relies on species as evolving entities”

[ScKu98].

After each successful second phase, an optimization mechanism called fault

dropping is activated. All still untested faults are simulated with the new sequence,

 High Level Test of Electronic Systems - High-Level ATPG

36

seeking if any additional fault is detected by it. This is more of a possibility than an

expectation, since the starting sequence found in the first phase is required to be able

to excite more than one fault. The fault dropping mechanism greatly enhances overall

algorithm performance.

3.5 Experimental Evaluation

In order to practically evaluate the effectiveness of the proposed approach, we

implemented a prototype. The generator is composed of about 1,500 lines in ANSI C

and interacts with V-System 5.3 VHDL simulator by Model Technology. Special

techniques are adopted to speed-up fault simulation [CCSS00a]. During experiments

we adopted the following parameter values:

• first-phase initial sequence length of 50 clock cycles (L = 50);

• first phase sequence required to excite 5 different faults (k = 5);

• second phase population of 10 individuals (P = 10).

RT-level Faults Gate-level Faults Circuit CPU time
[s] Tot Det FC% Tot Det FC%

b01 78,80 81 81 100,00% 258 258 100,00%
b02 39,19 43 39 90,70% 150 149 99,33%
b03 1.089,96 213 145 68,08% 822 615 74,82%
b04 1.627,86 424 353 83,25% 3.356 3.035 90,44%
b05 1.932,27 778 244 31,36% 5.552 1.856 33,43%
b06 200,31 110 82 74,55% 5.552 5.387 97,02%
b07 9.297,26 289 146 50,52% 2.404 1.401 58,28%
b08 2.832,38 154 118 76,62% 918 839 91,39%
b09 4.970,53 240 196 81,67% 900 768 85,33%
b10 778,35 172 127 73,84% 1.054 961 91,18%
b11 34.837,11 381 263 69,03% 2.868 2.614 91,14%
b12 7.890,20 870 115 13,22% 5.280 1.105 20,92%
b13 2.801,85 284 224 78,87% 1.818 1.501 82,56%
b14 473.741,90 10.493 9.114 86,86% 28.990 23.708 81,78%
b15 590.611,31 4.900 2.026 41,35% 55.568 18.060 32,50%

Table 6: ARPIA Result

Table 6 reports the experiments performed on the ITC99 RT-level benchmarks.

These benchmarks are representative of typical circuits, or circuit parts, that can be

 High Level Test of Electronic Systems - High-Level ATPG

37

automatically synthesized as a whole with current tools and are described in [CSSq00].

Experiments have been run on a Sun Enterprise 250 running at 400 MHz and

equipped with 2 Gbytes of RAM.

The first column of Table 6 reports the name of the benchmark, while the CPU

time required to generate the test signal sequence is shown in the second column. RT-

level fault figures are reported in the next column block in terms of: total number of

faults [Tot], number of detected faults [Det] and percent fault coverage [FC%]. The

next column block shows gate-level figures: total number of gate-level faults [Tot],

number of detected [Det] and respective fault coverage [FC%].

Results show that ARPIA is able to generate test sequences that are highly

effective both at RT-level and at gate-level, within an acceptable CPU time. However,

to better analyze the tool performance, we need to compare it with different approach

(Table 7).

ARPIA (no ES) ARTIST ARPIA Circuit
RT Gate RT Gate RT Gate

b01 100,00% 99,61% 100,00% 100,00% 100,00% 100,00%
b02 90,70% 99,33% 90,70% 99,33% 90,70% 99,33%
b03 56,81% 69,10% 68,08% 74,82% 68,08% 74,82%
b04 69,34% 69,19% 83,79% 91,03% 83,25% 90,44%
b05 11,31% 5,42% 31,36% 33,50% 31,36% 33,43%
b06 70,00% 93,38% 74,80% 97,35% 74,55% 97,02%
b07 47,75% 56,49% 50,52% 58,28% 50,52% 58,28%
b08 52,60% 28,00% 60,10% 71,68% 76,62% 91,39%
b09 62,50% 48,89% 77,84% 81,33% 81,67% 85,33%
b10 46,51% 65,84% 73,69% 90,99% 73,84% 91,18%
b11 43,57% 58,79% 68,64% 90,62% 69,03% 91,14%
b12 2,76% 4,36% 29,06% 45,99% 13,22% 20,92%
b13 31,69% 31,19% n/a n/a 78,87% 82,56%
b14 11,57% 37,91% n/a n/a 86,86% 81,78%
b15 14,69% 12,75% n/a n/a 41,35% 32,50%

Table 7: Comparison with ARTIST and ARPIA without Evolutionary Algorithm

The first column block of Table 7 reports data for the first prototype of ARPIA,

where a simple hill-climber was exploited instead of the evolution strategy. The gap

between the two RT-level figures shows the fundamental role played by the

 High Level Test of Electronic Systems - High-Level ATPG

38

evolutionary algorithm. The gap between gate-level fault coverage statistics is a mere

consequence.

In the second column group of Table 7 we reported results attained by

ARTIST [CSSq00a], a highly-optimized tool exploiting a genetic algorithm. The

difference between these two tools can be explained resorting to both the fault model

and the new evolutionary mechanism. A deeper comparison between the results of

ARPIA and ARTIST (complete data can not be reported here for lack of space) shows

that the former is characterized by a higher efficiency (i.e., it requires a lower CPU

time), thanks to fault dropping and a higher compactness of the generated sequences.

Indeed, ARTIST was not able to tackle some of the benchmarks due its lower

efficiency (marked with “n/a” in the table).

RT-Level Faults Circuit
Tot Exc Det Err

Phase2
Efficacy

b01 81 81 81 0 100,00%
b02 43 43 39 4 100,00%
b03 213 148 145 3 100,00%
b04 424 356 353 3 100,00%
b05 778 340 244 19 76,01%
b06 110 87 82 5 100,00%
b07 289 240 146 20 66,36%
b08 154 118 118 0 100,00%
b09 240 196 196 0 100,00%
b10 172 139 127 12 100,00%
b11 381 289 263 26 100,00%
b12 870 130 115 1 89,15%
b13 284 266 224 16 89,60%
b14 10.493 10.165 9.114 0 89,66%
b15 4.900 2.244 2.026 24 91,26%

Table 8: Phase Two Effectiveness

The effectiveness of the evolutionary algorithm can also be seen in Table 8,

where the number of excited faults is shown in column [Exc] together with the

number of detected faults [Det]. The effectiveness of the evolutionary algorithm can

be defined as its ability to observe (i.e., to detect) excited faults, not considering faults

that are certainly unobservable due to incorrect design ([Err] column).

 High Level Test of Electronic Systems - High-Level ATPG

39

It should be noted that phase two effectiveness is quite high also for b12, a

problematic circuit where ARPIA only manages to get 13.22% RT-level fault

coverage. Thus, primarily the first phase can be hold responsible for the low

performance.

 High Level Test of Electronic Systems - Microprocessor Test

40

4 Microprocessor Test

Microprocessors and microcontrollers are known to be major challenges in the

test arena, due to their complexity and heterogeneity. Techniques for microprocessor

testing can be first divided in two groups, depending on whether implementation

information are available (for microprocessor producers) or not (when users adopt

producer-independent incoming inspection test). In the latter case, only high-level

functional information are available, and test solutions can not rely on any knowledge

about the real implementation of the device. A similar situation arises when soft IP

cores are designed, and suitable input sequences are required, able to test them no

matter the technology re-mapping and the environment the core is embedded in.

In both the above cases, any Design for Testability technique can hardly be

considered, and an effective solution is to devise a test program to be executed by the

microprocessor itself. Its behavior must be monitored, and possible mismatches signal

the existence of one or more faults inside the processor.

Traditionally, the test of a microprocessor has been performed by resorting to

functional approaches based on exciting all the functions and resources described in

its data-sheets [ThAb80]. This approach involves a high amount of manual work

performed by skilled programmers, and does not provide any quantitative measure

about the attained Fault Coverage (FC). Recently, Dey et al. proposed a deterministic

method named DEFUSE [ChDe00] to generate test programs able to reach a good

Fault Coverage on the ALU of a microprocessor, and to compact the result. The

approach is very effective with combinationally testable parts (e.g., simple ALUs), but

shows some limitation when hard-to-test sequential modules, such as Control Units,

are addressed. Another approach has been proposed by Batcher and Papachristou

[BaPa99] that is based on generating random sequences of instructions, but it requires

 High Level Test of Electronic Systems - Microprocessor Test

41

the insertion of additional hardware in the microprocessor under test. Recently, Sheen

et al. proposed a technique where the processor itself generates test at run-time by

self-modifying code [PMNo99]. On the other hand, Utamaphethai et al. showed a

method for generating instruction sequences for validating the branch prediction

mechanism of the PowerPC604 [NCPa92]. Generated sequences are very effective,

but the methodology exploits a deep knowledge of the processor and is not

straightforward to be applied on general designs.

The methodologies for developing test programs can be divided in three types:

manual, semi-automatic and automatic. The first one relies on internal knowledge of

processor and requires skilled programmer, expert in architecture and test. The semi-

automatic methodology is based on the idea of let an ATPG assembles and refines

some manually prepared code fragments. In the last one an ATPG generates

automatically test programs on the base of an instructions set description.

In the next sections a semi-automatic and an automatic method for developing

Test programs are described analyzing their advantages and limitations.

4.1 A Semi-Automatic Test Program Generation
Methodology

The method partly stems from the ideas already introduced in [CSSq01], but

thanks to the adoption of an effective RT-level fault model [CCSS00], any reference

to the gate-level netlist is avoided. The proposed method requires a limited amount of

manual work aimed at developing a library of macros, which are able to excite all the

functions of the processor and to make the effects of possible faults observable. A

macro is required for every machine-level instruction; each macro is composed of few

instructions, aimed at activating the target instruction with some generic operand

values representing the macro parameters, and to propagate to an observable memory

position the results of its execution. The complexity of the work for developing these

macros and the required skills are much lower than for the approaches based on

functional testing, such as [ThAb80]; in fact, our approach just requires the

development of one macro for every machine-level instruction according to a simple

pre-defined skeleton for every group of instructions, and does not involve the

 High Level Test of Electronic Systems - Microprocessor Test

42

extraction of complex graphs describing the relationships among resources, as in

[ThAb80]. The final test program is composed of a proper sequence of macros taken

from this library, each activated with proper values for its parameters (i.e., the

operands of the composing instructions). This phase is accomplished by resorting to a

Genetic Algorithm which exploits an RT-level Fault Simulator to evaluate the

generated solutions. Experimental results supporting the effectiveness of the method

are reported for a core of the Intel 8051 microcontroller using a prototypical

implementation of our algorithm. A synthesizable VHDL RT-level description of the

microprocessor is used. Final figures show that the test program generated by the tool

has a higher effectiveness (in terms of attained gate-level fault coverage) than the one

generated by the gate-level test program generation method introduced in [CSSq01],

and that the required computational effort is comparable between the two approaches.

4.1.1 Test Strategy

Test sequence generation for microprocessors necessarily requires the

knowledge of the processor instruction set and instruction format, since only correct

programs can internally perform meaningful operations. A solution for this problem

was proposed in [CSS00] with the usage of macros: a short sequence of instructions

aiming at creating a suitable framework for testing the part of control unit and data-

path affected by a given instruction (or group of instructions).

The purpose of macros is to execute all the possible instructions and to make

observable the complete result of each instruction, which also includes any flag that is

possibly affected by the instruction itself.

MOV AX, K1 ;load register AX with K1
MOV BX, K2 ;load register BX with K2
ADD AX, BX ;sum BX to AX
MOV RW, AX ;write AX to RW
MOV RW2, PSW ;write status register to RW

Figure 8: Pseudo-code of the macro for the ADD instruction.

 High Level Test of Electronic Systems - Microprocessor Test

43

As an example, Figure 8 reports the code (for sake of readability we use a

pseudo-assembly language) for the macro concerning the addition instruction between

registers using K1 and K2 as parameters. RW and RW2 are two easily observable

memory locations.

Macros are stored in a library. A test program is a collection of macros. An

optimization algorithm selects the most suitable ones from the library, and defines the

values of their parameters.

The effectiveness of test program generation for microprocessors RT-level

descriptions strongly depends on the adopted RT-level fault model. We selected the

RT-Level single-bit stuck-at fault model [CCSS00] that shows a good correlation with

gate-level stuck-at faults.

An RT-level single-bit stuck-at fault is defined as a single-bit stuck-at in the

effect of an RT-level assignment operation: when a fault is present, the affected object

(signal or variable target of an assignment statement) loads the correct value, except

for one bit that remains stuck to 0 or 1. The effect VHDL statement is the statement

corresponding to the fault. The faults are single and permanent: only one fault is

inserted at a time and the fault effect is present during the whole simulation. Other

assignments of the same signal are assumed to be fault-free, since stuck-at faults on

the same signal but on different statements are considered different.

addr <= (tail + reg1) mod 2**8;

00000100 00001001

00101101

Figure 9: RT-level Single bit Stuck-at Fault Example.

Figure 9 shows the example of a RT-level single bit stuck-at fault. The fault affects

the third bit of the assignment operation, and modifies the result of the expression,

after it has been computed and before it is assigned to the target signal.

 High Level Test of Electronic Systems - Microprocessor Test

44

Better correlation with the gate-level fault model is obtained with the

application of some Fault Collapsing rules, described in Section 2.1.2, able to

partially eliminate the RT-level faults that do not correspond to any gate-level fault

after synthesis.

4.1.2 Test Program Generation

To perform Test Program Generation starting from the analysis of the VHDL

description, we must select the best macros and the values of their parameters in order

to create a program able to detect the highest number of faults.

The environment we propose, whose architecture is shown in Figure 10, is

composed of:

• Fault Manager, that analyzes the VHDL description and creates a

Fault List, according to the RT-Level single-bit stuck-at fault model

and using the Fault Collapsing rules introduced above;

• a Core that, using a set of heuristics (i.e., greedy, hill climber and

evolutionary algorithms), selects the most suitable macros and the

values for their parameters to create the test program;

• a Fault Injector that, interacting with the Fault Simulator, injects the

faults on the microprocessor RT-level description and evaluates the

effectiveness of the macros created by the Core.

After generating the Fault List, the faults are injected during the simulation

whenever the corresponding statement is executed. All the faults corresponding to a

statement which has been executed at least once by the test program are labeled as

executed. Once a fault is executed, it is also excited, if the corresponding bit assumes

a value in the fault-free system which is the opposite of the stuck-at one. Finally,

when a fault produces at least one difference in the output behavior of the processor

(in terms of produced and observable results) it is marked as detected.

As we work on a microcontroller description, we can group faults in two

classes:

• detectable independently from macro operands;

• detectable only using a specific set of macro operands.

 High Level Test of Electronic Systems - Microprocessor Test

45

In this work, the faults that belong to the first class are called control-

dependent faults and the ones belonging to the second class are called data-dependent

faults. Based on our experience most of the control-dependent faults are located in the

Control Unit and in the Instruction Decoder, where the systems decides how to

elaborate the instruction data. Instead, most of the data-dependent faults are located in

the data path (e.g., in the Arithmetic and Logical Unit).

ATPGS

Fault
Manager

VHDL
Description

Fault
List

Macro
Library

RT-Level
Simulator

Core

Fault
Injector

Test
Program

Figure 10: Test Program Generation Architecture.

4.1.3 Algorithm

The algorithm we propose is based on two phases:

• control-dependent fault detection phase;

• data-dependent fault detection phase.

The detection of control-dependent faults is based on the correct selection of

the operative code and the addressing mode. The detection of these faults depends on

which instructions (i.e., which macros) have been executed by the microprocessor,

independently from a specific set of data to be used as macro parameters. For this

reason, a first phase is activated, which aims at maximizing the number of detected

control-depending faults. The pseudo-code of this phase is reported in Figure 11.

 High Level Test of Electronic Systems - Microprocessor Test

46

At each iteration, the procedure select_best_macro simulates each

macro in the library with random operands. By means of this procedure the VHDL

statements executed during the fault-free simulation of each macro are identified. The

macro M that maximizes the number of executed faults is selected. The selected macro

is then fault simulated and, if at least one new fault is detected, it is added to the final

test program. The macro M is also marked as used to avoid being selected again in this

phase.

do
{ (M,O) = select_best_macro();
 F = compute_detected_faults(M,O);
 if(F is not empty)
 add M(O) to the test program;
 drop_faults(F);
 remove M from selectable_macros;
} while(stopping_condition is false)

Figure 11: Control-dependent fault detection phase pseudo-code.

When all the macros of the library have been selected and fault simulated, all

the macros become selectable again and the second phase starts.

The goal of the second phase is to detect data-dependent faults. The coverage

of these faults depends on the arguments of each instruction (i.e., macro operands)

executed by the microprocessor. The pseudo-code of this phase is reported in Figure

12.

As in the first phase, at each iteration the instructions executed by each macro

of the library are first identified via fault-free simulation. The macro M, that

maximizes the number of executed faults is selected.

A hill-climbing algorithm is then activated, whose goal is to find the values for

the macro operands (O) that maximize the number of faults excited by the macro. At

the beginning a set of random operands Omax is created and the number of faults Nmax
activated by the macro M(Omax) is computed. At each iteration a new set of operands

Onew is created applying local transformations (i.e., changing some bit values) to Omax.
If the number of faults Nnew activated by the macro M(Onew) is higher than Nmax, Omax

 High Level Test of Electronic Systems - Microprocessor Test

47

and Nmax are substituted by Onew and Nnew, and a new iteration starts. The hill-climber

runs until the number of activated faults reaches a given threshold, or the maximum

number of iterations has been reached.

do
{ M = select_best_macro();
 do
 { O = select_operands(M); /*hill climber*/
 F = compute_detected_faults(M, O);
 if(F is not empty)
 { add M(O) to the test program;
 drop_faults(F); }
 A = compute_activated_faults(M, O);
 do
 { Ft = select_fault(A);
 O = optimize_the_operands(M, Ft);
 if(Ft is detected)
 { add M(O) to the test program;
 fault_dropping(M, 0); }
 }while(A is not empty);
 }while(stopping_condition() == FALSE);
 remove M from selectable_macro;
}while(selectable_macro is not empty);

Figure 12: Data-dependent fault detection phase pseudo-code.

For each fault Ft activated by the selected macro, a Genetic Algorithm,

detailed in next Section, is then executed, whose goal is to find the values for the

macro operands (O) that detect the target fault.

If Ft is detected, the macro is added to the final test program and a fault

dropping phase is activated; otherwise, the fault is discarded, to avoid being

considered again with this macro.

When all the activated faults have been detected or discarded, the algorithm

returns to the hill-climber in order to try to activate others faults.

The stopping condition is true when either the Fault Coverage reaches a given

threshold, or the maximum number of iterations has been reached.

When the stopping condition is reached, the selected macro is marked as used,

all the faults discarded are reinserted in the Fault List, and a new iteration starts.

 High Level Test of Electronic Systems - Microprocessor Test

48

The data-dependent faults detection phase ends when either the Fault

Coverage reaches a given threshold, or all the macros of the library have been selected.

4.1.4 Genetic Algorithm

Once a macro has been selected from the library, a fault simulation is

performed. For each fault excited by the selected macro, a Genetic Algorithm (GA) is

then activated.

The goal of the GA is to identify the best values for the parameters of the

selected macro in order to detect the target fault. The algorithm chooses the values for

immediate operands, and those to be written in the registers or memory cells used by

the target instruction.

The number of operands and their length (in bits) depend on the macro. A

standard steady-state Genetic Algorithm is exploited, whose main characteristics are

summarized in the following:

• chromosomes are bit strings corresponding to the concatenated

operands; their length is function of the macro;

• the mutation operator randomly selects a bit in the chromosome, and

complements it;

• the cross-over operator is the standard one-cut crossover;

• chromosomes are selected using a linearized fitness function and a

roulette wheel mechanism.

The fitness function of a chromosome measures how far the macro M, created

with the chromosome parameters O, is able to propagate the target fault Ft effects.

More precisely, it is the maximum number of differences caused by the fault during

the execution of the macro.

∑
∈

=
objectsSvt objectbitsdifferentMAXFOMFitness)(_),,(

where different_bits counts the number of bits having a different value in the

fault-free and faulty system for any VHDL objects (i.e., signal and variable). The

fitness function calculates the sum of differences at every clock cycle of any

execution of the macro and takes the maximum.

 High Level Test of Electronic Systems - Microprocessor Test

49

The algorithm is stopped when the target fault is detected or a steady state is

reached, i.e., when a given number of generations have elapsed without detecting the

target fault.

4.1.5 Experimental Evaluations

In order to test the effectiveness of this semi-automatic technique we

implemented it in a tool called Automatic Test Program Generation System (ATPGS).

ATPGS amounts to about 11,000 lines of C code including an in-house developed

RT-Level Fault Simulator based on a commercial VHDL Simulator (ModelSim 5.5a

by Mentor Graphics).

The system has been evaluated on a synthesizable VHDL description of the

Intel 8051 microcontroller, containing the core system without peripherals, whose

main characteristics are summarized in Table 9.

Primary inputs 41
Primary outputs 45

VHDL lines 13,583
Processes 6
Procedures 29

RT-level faults 15,387
Gates 12,134

Flip flops 1,325
Gate-level faults 28,792

Table 9: 8051 description characteristics.

The Fault Simulator is able to simulate the entire 8051 while it executes the

program stored in the embedded ROM, injecting RT-level single bit stuck-at faults in

VHDL code. ATPGS is able to modify the program stored in the 8051 ROM without

recompiling the entire VHDL code but interacting with the simulator in order to

modify at runtime the map of the ROM. A library of 115 macros is exploited, each

composed of a number of instructions that ranges from 3 to 6.

The experiments have been performed on a Sun Enterprise 250 running at 400

MHz and equipped with 2 GBytes of RAM.

 High Level Test of Electronic Systems - Microprocessor Test

50

Parameter Value

Number of individuals in the population 25
Number of new individuals at each generation 25
Maximum number of generations without improvements 10
Crossover probability 0.7
Mutation probability 0.3

Table 10: Genetic Algorithm Parameters.

The values we used for the Genetic Algorithm parameters are reported in

Table 10.

RT-Level
ATPG

Macro
Library

Gate-Level
ATPG

NetlIst

Syntesis

Gate-Level
Fault Simulator

RT-Level
Fault Simulator

VHDL
Description

Gate
FC%

RT
FC%

Gate
FC%

Gate-Level
Fault Simulator

Figure 13: Experimental setup for comparison purposes.

For the purpose of the experiments, the RT-level ATPG was first run, with the

goal of maximizing the Fault Coverage based on the RT-level fault model and a test

program was obtained. For comparison purposes, a second set of experiments was

then performed: the RT-level description of the 8051 was synthesized and fault

simulated at gate-level. Using this description, we compared the results obtained by

the RT-level ATPG (Table 11) with the Fault Coverage obtained by the gate-level

 High Level Test of Electronic Systems - Microprocessor Test

51

ATPG described in [CSSq01] (Table 12). The whole procedure adopted for the

experiments is outlined in Figure 13.

The reported results show the proposed technique provides Fault Coverage

figures higher than the gate-level ones, with a slight increase in the length of the final

test program (in terms of number of instructions).

The RT-level ATPG works on a Fault List created analyzing the VHDL

description and reduced by the Fault Manager applying the Fault Collapsing rules.

RT-level faults [#] 15,387
Executed faults [#] 13,364
Excited faults [#] 12,263

Detected faults [#] 12,122
Test Program Instructions [#] 883
RT-level Fault Coverage [%] 78.78

Gate-level Fault Coverage [%] 89.47

Table 11: Test Program generation from RT-level description.

Gate-level faults [#] 28,792

Detected faults [#] 25,759

Test Program Instructions [#] 624

Gate-level Fault Coverage [%] 85.19

Table 12: Test Program generation from gate-level description.

In the 8051 Fault List above 40% of the faults are eliminated by the usage of

the rules; this happens because many internal parameters, especially in the Instruction

Decoder and in the Control Unit, are constants. Before the proposed method is

evaluated in terms of required computational effort, it must be first emphasized that in

the current implementation of the tool the RT-level Fault Simulation is performed

exploiting a commercial VHDL simulator. The interaction with it is necessarily loose,

and therefore slow. However, if the method were integrated in the code of the

simulator, a much higher efficiency would be attained. For this reason, to evaluate the

required computational effort, we adopted as a parameter the number of 8051

 High Level Test of Electronic Systems - Microprocessor Test

52

instructions simulated by ATPGS during the test program generation phase. This

number is equal to about two million instructions, and roughly corresponds to the

number of instructions simulated by the gate-level ATPG described in [CSSq01].

4.1.6 Methodology Limits

The semi-automatic methodology described in the previous paragraph is not

suitable for advanced processor architectures that contain parts (e.g., pipelines and

caches) whose behavior is determined by a sequence of instructions and by the

interaction between their operands.

Pipelined microprocessors, in particular, are complex and critical designs. A

pipeline contains several independent units, called stages, and each stage executes

concurrently, feeding its results to following units. Instruction execution-steps are

arranged so that the CPU does not have to wait for one operation to finish before

starting the next: consecutive instructions are likely to have their execution

overlapped in time.

The first interesting consequence is that the behavior of a pipeline is not

determined by one instruction and its operands, but by a sequence of instructions and

all their operands. The simultaneous execution of multiple instructions leads to

additional difficulties. Reviewing all pipeline peculiarities would deserve a very long

discussion, but it may be insightful sketching three types of potential problems: data,

control and structural hazards.

Data hazards are caused by data dependency between instructions: for instance,

one instruction may depend on the result of a previous one, already in the pipeline.

They are usually classified as RAW (read after write), WAR (write after read) and

WAW (write after write) depending on the operations involved. Control hazards are

caused by instructions that alter the usual flow of the program. For example, a

conditional branching instruction invalidates the execution of all instructions

following the incorrectly-predicted branch. Finally, structural hazards are produced by

instructions contenting non-sharable resources, such as the floating-point unit.

In all cases, the simplest solution is to “stall” the pipeline until the hazard is

resolved, however an excessive stalling may significantly degrade the overall

 High Level Test of Electronic Systems - Microprocessor Test

53

performance. Thus, to reduce stalls, designers adopt mechanisms, such as data

forwarding. The basic idea of data forwarding is to pass a result directly to the

functional unit that needs it, forwarding data from the output of one unit to the input

of functional unit(s) requiring it.

Test programs may be exploited for verification, during design process, or for

post-production test. Simulating the execution of appropriate test programs is a

standard step in any verification process, even when formal techniques or other

advanced methodologies are exploited. Furthermore, a test strategy based on a test

program is broadly applicable. It does not rely on the insertion of special test

architectures such as scan chains, thus it may be the only viable solution for

microprocessors embedded inside a SOC (System-On-a-Chip). Furthermore, it allows

an at-speed testing, an essential attribute for testing delay faults.

Despite its potential usefulness, automatically devising test programs for

pipelined microprocessors is still an open problem (which becomes even bigger when

superscalar architectures are considered, where two or more operations are executed

in parallel). As mentioned before, it is not sufficient to check the functionalities of all

possible instructions with all possible operands, but it is necessary to check all

possible interactions between instructions and operands inside the pipeline. The task

is not trivial, as data forwarding and similar mechanisms may lead to complex

interactions.

In the literature, microprocessor test has been traditionally performed resorting

to functional approaches based on exciting functions and resources ([ThAb80],

[ShSu88]). However, these methodologies involve high amount of manual work.

More recently, [ShAb98] proposes a methodology to synthesize a self-test

program not based on an a-priori fault model. The approach generates a sequence of

instructions that enumerates all the combination of the operations and systematically

selects operands. However, users need to determine the heuristics to assign values to

instruction operands to achieve high stuck-at fault coverage. In some cases, this might

not be a trivial task.

[KPGZ02] describes a methodology that allows devising an effective test

program for a microprocessor core. However, the method requires that test engineers

 High Level Test of Electronic Systems - Microprocessor Test

54

create deterministic test patterns to excite the entire set of operations performed by

each component of the core.

Unfortunately, all these approaches disregard pipeline behavior, or implicitly

assume all single instructions to be independent, leading to a questionable efficacy.

Other techniques are potentially able to tackle pipelined designs. [BaPa99], for

instance, is based on generating random sequences of instructions and is able to attain

a fairly high level of fault coverage on non-pipelined architecture. However it requires

the insertion of BIST circuitry, and assumes that all instructions are single-cycle and

busses are never floating.

[LeSi91] proposes an interesting approach for functional testing of pipelined

processors, but generated tests were extremely large. [SATa96] presents a more

effective methodology. However, both methodologies require high amounts of manual

work.

Since verification and test have several common points, papers dealing with

pipelined microprocessor verification are also of deep interest. [UBSh99] showed a

method for generating instruction sequences for validating the branch prediction

mechanism of the PowerPC604. Generated sequences are very effective, but the

methodology exploits a deep knowledge of the target processor and cannot be easily

applied on general designs.

[HeDu01] showed how a pipelined processor can be modeled with a high-level

behavioral HDL description. Authors manage to fit the model in a moderately sized

FPGA and exploited it for various analysis, included testability. The approach

requires high amount of manual work performed by skilled experts, and its efficacy

depends on how features are captured by the model and may be easily biased by

engineers’ opinions.

4.2 An Automatic Test Program Generation Methodology

The approach presented in these paragraphs, differently from the above, is

automatic, broadly-applicable and does not rely on skilled experts. It exploits an

evolutionary technique called genetic programming ([Koza98]) and automatically

induces assembly programs for maximizing a defined metric. Test-program generator

 High Level Test of Electronic Systems - Microprocessor Test

55

parameters are auto-adapted to their optimal values automatically and human

intervention is limited to the enumeration of all available instructions and their

possible operands. The methodology is able to tackle both conventional and pipelined

processors, and can be utilized both for test and verification.

In modern µPs instructions are pipelined; this means that consecutively-

executing instructions can have their execution overlapped in time. The details of

instruction execution are arranged so that the CPU doesn't have to wait for one

operation to finish before starting the next.

 RegA = 100;
 GOTO LABEL;
 RegA = 0;
 RegA = 10;
LABEL:
 RegA = RegA + 1;

Figure 14: Pipeline Effects

A striking peculiarity concerns program branches. When the CPU is ready to

execute an instruction, it must first fetch that instruction (asking memory to retrieve

the instruction at the appropriate address) and then execute that instruction (figuring

out which operation is specified by that instruction and actually carrying it out). In

modern pipelined architectures, at any given time, the CPU will be executing some

instructions and, at the same time, it will be fetching the next instructions in the

program. When a jump instruction is executed (for example, a call to a subroutine),

the instruction appearing immediately after the call or jump in the code is already

fetched in the pipeline. Thus, depending on µP architecture and implementation, the

instruction following a branch may execute regardless of which way the branch goes.

For instance, after the pseudo-code in Figure 14, variable A holds 1 and not

101. Several hazards also arise from data dependencies, when consecutive instructions

operate on the same data (in Figure 14, for instance, consecutive instructions read and

modify the value of register RegA, resulting in a hazard).

Pipelined-processor assembly-language programmer must be constantly aware

of all these problems while coding. Fortunately, modern compilers handle these

 High Level Test of Electronic Systems - Microprocessor Test

56

peculiarities automatically and most of high-level programmers may ignore them;

however, a test program able to test the pipeline must be written directly in machine

code.

4.2.1 Test-program Generation

The overall architecture of the proposed approach is shown in Figure 15.

Figure 15: System Architecture

The Generator cultivates a population of test programs, exploiting the

description of the syntax of the microprocessor assembly language stored in an

external instruction library. Induced test programs are evaluated by an external

Evaluator that provides feedback to the Generator.

In particular, the method demonstrates to efficiently generate test programs for

the two microprocessors, able to maximize the value of two target metrics, i.e., the

statement coverage on RT-level descriptions, and the toggle activity on gate-level

ones.

Next Sections better detail the approach.

4.2.2 Program Evaluation

Test-program evaluation associates a fitness value to each test program. This

value is used to probabilistically select the λ parents for generating new offspring and

µP
description

Generator

test
program

instruction
library

Evaluator

 High Level Test of Electronic Systems - Microprocessor Test

57

to deterministically select the best µ individuals surviving at the end of each evolution

step.

Different evaluation functions are used accordingly to the goal of the test-program

generation. The loose coupling between the test-program generator and the test-

program evaluator extends the applicability of the approach.

In this work, two different evaluation functions are exploited: RT-level statement

coverage and gate-level toggle activity.

The former is one of the simplest verification metrics and can be considered as a

required starting point for any simulation-based design-verification process. Statement

coverage analysis ensures that no part of the design missed functional test during

simulation, as well as reducing simulation effort from “over-verification” or

redundant testing. Moreover, use of coverage analysis provides an easy and objective,

although insufficient, way of measuring simulation effectiveness to ensure that all

bugs would be exposed with the minimum amount of effort. Indeed, most CAD

vendors have recently added code-coverage features to their simulators.

The toggle activity metric is a well-known metric for measuring functional

vectors at the gate-level and for validating the integrity of a test suite [KaNo96]. It

measures the percentage of toggled nodes, i.e., the percentage of nodes that switch

from logic 0 to logic 1 and vice-versa. It was adopted as a preliminary step towards

the generation of programs able to test gate-level stuck-at faults: being able to toggle

all nodes is equivalent of being able to excite gate-level stuck-at faults; obviously

observability is not taken into account.

4.2.3 Assembly-Level Test-Program Induction

Genetic Programming (GP) was defined as a domain-independent problem-

solving approach in which computer programs are evolved to solve, or approximately

solve, problems [Koza98]. GP addresses one of the more desired goals of computer

science: creating, in an automated way, computer programs able to solve problems.

In GP context programs are usually represented as tree. A tree is a special kind

of directed acyclic graph where there is only one path between any two nodes. Tree

representations have been traditionally implemented in the LISP language as

 High Level Test of Electronic Systems - Microprocessor Test

58

S-expressions. However, in recent year, several researchers proposed to modify this

conventional representation.

Remarkably, in [Hand94] the whole population was stored as a single directed

acyclic graph, rather than as a forest of trees, leading to considerable savings of

memory (structurally identical sub-trees are not duplicated) and computation (the

value computed by each sub-tree for each fitness case can be cached). In [Poli97] a

significant speed-up was achieved extending the representation from trees to generic

graphs and parallelizing the evolution process.

For the purpose of this works, however, it is more interesting to examine

techniques based on the idea of compiling GP programs either into some lower level,

more efficient, virtual-machine code or even into machine code.

Pioneering ideas date back to [Fried58]. However, more recently in [Nord94]

the author suggested to directly evolving programs in machine-code form for

completely removing the inefficiency in interpreting trees. More recently, a genome

compiler has been proposed in [FSMu98], which transforms standard GP trees into

machine code before evaluation. The possibilities offered by the Java virtual machine

are also currently being explored [KFKB98], [LHMo98].

4.2.4 Directed-Acyclic-Graph Representation

Since the goal is to generate an assembly program, the canonical S-expression

representation cannot be used. The tree representation was relaxed and the flow of the

program is represented as a directed acyclic graph (DAG). The semantic of each node

in the DAG consists in a pointer to a macro inside an instruction library and in

parameter values. The macro represents a fragment of machine code, usually a single

instruction, and parameters represent operand values and registers. It should be

remarked that in any assembly language programmers may use several different

registers, thus node semantic must include register specification.

A DAG is always translated to a syntactically-correct assembly program.

However, it not possible guaranteeing a-priori any semantic meaning. An induced

program may perform operations on any register, and this exceptional freedom is

essential to generate test programs.

 High Level Test of Electronic Systems - Microprocessor Test

59

ADDU reg1, reg2, reg3
ADDI reg1, reg2, num
ADD reg1, reg2, reg3

ADDU.I reg1, reg2, num
ADDUC reg1, reg2, reg3

PARAMETERS

Previous
Node

Next
Node

reg1 = r25

reg2 = r18

reg3 = r10

ADDU r25, r18, r10

Instruction
library

ADDU reg1, reg2, reg3
ADDI reg1, reg2, num
ADD reg1, reg2, reg3

ADDU.I reg1, reg2, num
ADDUC reg1, reg2, reg3

PARAMETERS

Previous
Node

Next
Node

reg1 = r25

reg2 = r18

reg3 = r10

ADDU r25, r18, r10

Instruction
library

Figure 16: A sequential instruction

Moreover, the library approach has been developed to enable the genetic core

and the DAG structure to work with different assembly languages. Different

processors not only implement different instruction sets, but also use different

formalisms and conventions. Indeed, the method has been successfully tested with

three different processors: an i8051, a CISC (complex instruction set computer)

micro-controller developed by Intel; a DLX, an academic processor implementing a

5-stage pipeline [HePa] and a SPARC, the well known strongly-pipelined RISC

(reduced instruction set computer) processor [18]. Additionally, exploiting abstract

macros the program is able to infer data dependencies this ability may be used during

assembly-level program generation to avoid inconsistencies.

Each node of the DAG (Figure 17) contains a pointer inside the instruction

library and, when needed, its parameters (i.e., immediate values or register

specifications). DAGs are built with four kinds of nodes: a prologue, an epilogue,

sequential instructions, and conditional branches.

Prologue and epilogue nodes are always present and represent required

operations, such as initializations. They depend both on the processor and on the

operating environment, and they may be empty. The prologue has no parent node,

while the epilogue has no children. These nodes may never be removed from the

program, nor changed.

 High Level Test of Electronic Systems - Microprocessor Test

60

Instruction Library

ADD
ADD.I
ADDU
ADDU.I
ADDUC
AND
AND.I
BEQZ
BNEZ
J
JAL
JALR
JR
LB
LB.I
LBU
LBU.I
LH
LH.I
LHI
LHU
LHU.I
LW
LW .I
MUL
MULU
OR
OR.I
SB
SB.I
SEQ
SEQ.I
SEQU
SEQU.I
SGE
SGE.I
…

A

B

C

D

E

F

G

H

Prologue

Epilogue

Instruction Library
Instruction Library

ADD
ADD.I
ADDU
ADDU.I
ADDUC
AND
AND.I
BEQZ
BNEZ
J
JAL
JALR
JR
LB
LB.I
LBU
LBU.I
LH
LH.I
LHI
LHU
LHU.I
LW
LW .I
MUL
MULU
OR
OR.I
SB
SB.I
SEQ
SEQ.I
SEQU
SEQU.I
SGE
SGE.I
…

A

B

C

D

E

F

G

H

Prologue

Epilogue

Figure 17: DAG and Instruction library

Sequential-instruction nodes represent common operations, such as arithmetic

or logic ones (e.g., node B). They have out-degree 1 and the number of parameters

changes from instruction to instruction. Unconditional branches are considered

sequential, since execution flow does not split (e.g., node D).

Conditional-branch nodes (e.g., node A) are translated to assembly-level

conditional-branch instructions. All common assembly languages implement some

 High Level Test of Electronic Systems - Microprocessor Test

61

jump-if-condition mechanisms. Programmers must use two instructions to check a

condition: a test and then a conditional branch.

 COMPARE A, B
 JUMP-IF-GREATER g_label
 ;
 ; These operations are executed if A <= B
 ;
g_label:

Figure 18: Conditional Branch

Figure 18 reports the assembly pseudo code for a simple if-then construct. It’s

remarkable that, since all these details are masked by compilers, they do not exist in

high-level languages.

All conditional branches implemented in the target assembly languages are

included in the macro library.

Unconditional branches are treated as sequential operations, since execution

flow does not split.

Finally, it must be noted that a single assembly instruction may correspond to

more than one entry in the instruction library. For instance, an ADD with three

registers as operands is distinct from an ADD with two registers and one immediate.

Figure 16 show a sequential node that will be translated into an

“ADDU r25, r18, r10”, i.e., store in r25 the unsigned sum of r18 and r10.

DAG representation does not support backward branches, either conditional or

unconditional. This characteristic guarantees program termination, since no endless

loop may be implemented. However, the effects of this small reduction in semantic

power still need to be evaluated with regards to µP test-program diagnostic

effectiveness. As a solution, library will probably include a macro containing a safe

backward jump, but it will be represented as a sequential node at the DAG level.

 High Level Test of Electronic Systems - Microprocessor Test

62

4.2.5 Program Induction

Test programs are induced by modifying a DAG topology, by mutating parameters

inside a DAG node, or by mating two different DAGs. All modifications are

embedded in an evolutionary algorithm implementing a (µ+λ) strategy.

In more details, a population of µ individuals is cultivated, each individual

representing a test program. In each step, an offspring of λ new individuals are

generated. Parents are selected using tournament selection with tournament size τ (i.e.,

τ individuals are randomly selected and the best one is picked). Each new individual

is generated by applying one or more genetic operators. The cumulative probability of

applying at least n consecutive operators is equal to n
cp .

After creating new λ individuals, the best µ programs in the population of

(µ+λ) are selected for surviving.

The initial population is generated creating µ empty programs (only prologue

and epilogue) and then applying im consecutive random mutations to each.

The evolution process iterates until the population reaches a steady state

condition, i.e., no improvements is recorded for Sg generations.

Three mutation and one crossover operators are implemented and activated

with probability padd, pdel, pmod and pxover respectively.

• Add node: a new node is inserted into the DAG in a random position.

The new node can be either a sequential instruction or a conditional

branch. In both cases, the instruction referred by the node is randomly

chosen. If the inserted node is a branch, either unconditional or

conditional, one of the subsequent nodes is randomly chosen as the

destination. When an unconditional branch is inserted, some nodes in

the DAG may become unreachable (e.g., node E in Figure 17).

• Remove node: an existing internal node (except prologue or epilogue)

is removed from the DAG. If the removed node was the target of one

or more branch, parents’ edges are updated.

• Modify node: all parameters of an existing internal node are randomly

changed.

 High Level Test of Electronic Systems - Microprocessor Test

63

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Mutation

Add Node Delete Node Modify Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Mutation

Add Node Delete Node Modify Node

Figure 19: Mutation Operands.

• Crossover: two different programs are mated to generate a new one.

First, parents are analyzed to detect potential cutting points, i.e.,

vertices in the DAG that if removed create disjoint sub-graphs (Figure

20). Then a standard 1-point crossover is exploited to generate the

offspring.

 High Level Test of Electronic Systems - Microprocessor Test

64

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

Cross
Over

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

End
Node

Start
Node

Cross
Over

Figure 20: Crossover Operand.

4.2.6 Auto Adaptation

The described approach is able to internally tune both the number of

consecutive random mutations and the activation probabilities of all operators.

Modifying these parameters, the algorithm is able to shape the search process,

significantly improving its performances.

The number of consecutive random mutations is controlled by parameter pc,

which, intuitively, molds the mutation strength in the optimization process. Generally,

in the beginning it is better to adopt a high value, allowing offspring to strongly differ

from parents. On the other hand, toward the end of the search process, it is preferable

to reduce diversity around the local optimum, allowing small mutations only. Initially,

the maximum value is adopted (pc = 0.9). Then, the µGP monitors improvements: let

IH be the number of newly created individuals attaining a fitness value higher than

their parents over the last H generations. At the end of each generation, the new pc

 High Level Test of Electronic Systems - Microprocessor Test

65

value is calculated as (1)new H
c c

Ip p
H

α α
λ

= ⋅ + − ⋅
⋅

. Then pc is saturated to 0.9. The

coefficient α introduces inertia to unexpected abrupt changes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 70 139 208 277 346 415 484 553 622 691 760 829 898 967 1036 1105 1174

ADD
DEL
MOD
XOVER
EVOLUTION

ADD
DEL
MOD
XOVER
EVOLUTION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 70 139 208 277 346 415 484 553 622 691 760 829 898 967 1036 1105 1174

ADD
DEL
MOD
XOVER
EVOLUTION

ADD
DEL
MOD
XOVER
EVOLUTION

Figure 21: Auto Adaptation.

Regarding activation probabilities, initially they are set to the same value padd

= pdel = pmod = pxover = 0.25. During evolution, probability values are updated

similarly to mutation strength: let O1
OP be the number of successful invocation of

genetic operator OP in the last generation, i.e., the number of invocations of OP

where the resulting individual attained a fitness value higher than its parents; and let

O1 be the total number of operators invoked in the last generation. At the end of each

generation, the new values are calculated as 1

1

(1)
OP

new
OP OP

Op p
O

α α= ⋅ + − ⋅ . Since it is

possible that pc > 0, O1 may be significantly larger than λ. Activation probabilities are

forced to avoid values below .01 and over 0.9, then normalized to

padd + pdel + pmod + pxover = 1. If O1 = 0, then all activation probabilities are pushed

towards initial values.

Figure 21 show the variation of activation probabilities in a real case.

4.2.7 Experimental Evaluation

Prototypes of the test-program generator and evaluator were implemented in

about 3,000 lines of C code. The test-program evaluator exploits Modelsim v5.5a by

 High Level Test of Electronic Systems - Microprocessor Test

66

Model Technology for simulating the design and getting coverage figures, both for

RT and gate-levels.

The prototype was tested with one no-pipelined processor (i8051) and two

different pipelined processors (DLX/pII and LEON P1754).

4.2.7.1 i8051

Despite its relatively old age, the i8051 is one of the most popular 8-bit micros

in use today. Its memory architecture includes 128 bytes of internal data memory that

are accessible directly by its instructions. A 32-byte segment of this 128-byte memory

block is bit addressable by a subset of the i8051 instructions, namely the bit-

instructions.

The i8051 instructions range from 0-operand ones, like “DIV AB” (divide

accumulator A by B) where all operands are implicit, to 3-operand ones, like

“CJNE Op1, Op2, RelAddr” (compare Op1 with Op2 and jump if they are not equal).

The i8051 allows 5 different addressing types: immediate, direct, indirect, external

direct and code indirect. As in many CISC, registers are not orthogonal to the

instructions and addressing modes.

The instruction library for the i8051 consists in 81 entries: prologue, epilogue,

66 sequential operations and 13 conditional branches. Listing instructions with their

syntax is a trivial task. On the contrary in [CSSV01] preparing the 213 macros

required two working days of an experienced engineer.

The methodology was tested on a gate-level implementation consisting in

about 12K gates connected to a program memory of 4 Kbytes and a data memory of 2

Kbytes. The complete fault list consists of 28,792 permanent single-bit stack-at faults.

A response analyzer was assumed connected to microprocessor output ports and the

signature available to the ATE. The test program generator inserts the consequent

observability instructions each time a DAG is mapped to an assembly program.

Evaluation has been performed on a Sun Enterprise 250 running at 400 MHz

and equipped with 2 Gbytes of RAM. The full generation of the test program required

few days, a time comparable with [CSSV01].

 High Level Test of Electronic Systems - Microprocessor Test

67

Table 13 shows the parameters of the test program generator. They are all

standard values and do not require special care. Mutation strength pc and activation

probabilities (padd, pdel, pmod and pxover), on the other hand, require careful tuning and

are automatically chosen by the algorithm.

PAR MEANINGS VALUE
µ Population size 5
λ Offspring size 10
τ Tournament size 2
im Initial mutations 100
H History for auto-adaption 4
α Auto-Adaption inertia 0.4
Sg Steady state 500

Table 13: i8051 Test Program Generator Parameters

In order to assess the effectiveness of the approach, the induced test program

is compared with a set of selected test programs. Table 14 reports the attained fault

coverage.

Fibonacci and int2bin are two cross-compiled algorithms. The former

calculates the Fibonacci series, while the latter converts an integer to a binary

representation. Plausibly, the attained fault coverage is quite low: both are only able to

detect 36.04% of the faults.

Approach FC [%]
Fibonacci 36.04

int2bin 36.04
TestAll 36.35

Random 62.93
Random Macro 80.19

ATPGS 85.19
MicroGP 90.77

Table 14: i8051 Experimental Results

TestAll is an exhaustive functional test program devised by the microprocessor

designer, it is relatively long and includes several loops. It tests all possible

 High Level Test of Electronic Systems - Microprocessor Test

68

instructions; however, since it disregards observability, the fault coverage attained is

only slightly superior to former approaches.

Random is the best result attained simulating randomly-generated test

programs without evolutionary mechanisms (i.e., selection, mating, survival of the

fittest and auto adaptation). For a fair comparison, the same number of programs

evaluated by the MicroGP during the generation phase was simulated.

Random Macro corresponds to the results achieved by randomly selecting a

sequence of macros created according to [CSSV01]. Results are considerably better

than for purely random approach since macros were carefully devised by experts and

include sharp mechanisms to make the results observable.

ATPGS reports the result of [CSSV01] where macros and a limited number of

evolutionary techniques are exploited. In the approach, a genetic algorithm is given

the goal to optimize parameters of heuristically selected macros. Program structures

are not evolved, but determined by internal macro code.

MicroGP outperforms all former approaches, reaching a fault coverage of

90.77%. The compilation of the instruction library is a trivial task compared to

[CSSV01] and the improvements stems from the enhanced evolutionary mechanisms

and the sharper fitness.

A deeper analysis of the fault list enabled identifying a set of combinationally

untestable faults in the control unit. Pruning these faults, the fault coverage attained

by the MicroGP reaches 94.59%.

4.2.7.2 DLX/pII

Experiments on DLX/pII were targeted at devising test programs for

maximizing RT-level statement coverage and gate-level toggle activity.

In more details, the DLX/pII is a 5-stage pipelined version of the DLX

microprocessor [PaHe96]. It implements 52 instructions: 18 arithmetic or logic ones,

12 tests, 6 branches, 4 specials, and 12 load/store. DLX supports 3 addressing modes:

register, immediate, displacement (i.e., offset). Two additional addressing modes

(register deferred and absolute) may be considered special form of displacement

addressing. The exploited architecture is described at the RT-level with 979 VHDL

 High Level Test of Electronic Systems - Microprocessor Test

69

statements, while the synthesized core is composed of about 38K gates and 650 flip-

flops.

The instruction library for the DLX consists in 91 entries: prologue, epilogue,

82 sequential operations and 7 conditional branches. Listing instructions and their

syntax was a trivial task. The prologue contains a routine for initializing RAM

memory.

Program INST CLK SC [%] TA[%]
arith_s 47 64 64.56 20.05

carry_su 23 63 65.17 18.22
except 78 108 75.18 17.51

fak 25 72 65.37 16.22
intrpt1 17 217 74.97 12.71
jump1 22 77 66.19 18.58

loadstore_s 129 174 69.25 20.98
loadstore_su 120 174 69.25 19.33

mul_su 15 93 74.67 15.21
set_s 107 144 64.45 20.50
set_su 205 144 64.45 21.04
div32 40 77 64.96 17.64
mul32 24 85 63.94 18.51

System01 199 267 74.36 17.32
all_instr 113 156 79.78 23.51

Cumulative 1,164 1,915 80.59 32.59
µGPSC 812 1,084 94.59 24.38
µGPTA 16,314 19,692 76.00 87.51

Table 15: DLX Summary

Table 15 compares 15 programs in terms of: number of instructions (INST),

clock cycles required for execution (CLK), attained RT-level statement coverage (SC)

and attained gate-level toggle activity (TA). Programs include functional test

programs provided by microprocessor implementers (arith_s, carry_su, except, fak,

intrpt1, jump1, loadstore_s, loadstore_su, mul_su, set_s, set_su), application (mul32

and div32), system software (system01) and an exhaustive functional test that checks

all possible instructions (all_instr). Row (Cumulative) shows the figures attained

cumulatively by all these 15 programs.

 High Level Test of Electronic Systems - Microprocessor Test

70

Row (µGPSC) reports the result attained by an induced test program which

maximizes the RT-level statement coverage. On the other hand, row (µGPTA) shows

the results attained by a test program evolved adopting the gate-level toggle activity

for evaluating fitness. Devising a test program requires the simulation of about 10,000

programs, corresponding to about two days on a Sun Enterprise 250 with two

UltraSPARC-II CPUs at 400MHz, and 2GB of RAM.

For the sake of comparison, 10,000 random programs of about 20K

instructions were generated and evaluated. All programs include the prologue and

epilogue exploited by µGP. Random test program performance is reported in Table 16

in terms of RT-level statement coverage (SC) and attained gate-level toggle activity

(TA). Row (BEST) reports the best result reached by a program, while row (SUM)

shows the cumulative figures attained by simulating all random programs. Indeed,

also simulating 10,000 random programs requires about 2 days on the same

workstation.

 SC [%] TA [%]
BEST 77.12 18.46
SUM 78.87 19.59

Table 16: DLX Random Approach Summary

Firstly, it can be seen that devising a test case able to reach high statement

coverage on a pipelined processor is a challenging task, even on a relatively small

processor like DLX. Application code is seldom effective to fully validate a design. In

fact mul32, a 32-bit multiplication performed through shifts and sums, attains the

lowest statement coverage. Also specific test benches, like set_s, are not able to attain

globally good results, despite a long execution time (e.g., except).

The induced test program outperforms all other tests, and the versatility of the

approach can be seen comparing the last two lines: the use of different fitness

functions leads to different results. Maximizing the RT-level statement coverage is

different from maximizing the gate-level toggle activity. Interestingly, the latter does

not imply the former.

 High Level Test of Electronic Systems - Microprocessor Test

71

Statement Coverage [%] Program
IF DEC EXE MEM WB

arith_s 75.15 56.98 100.00 31.69 100.00
carry_su 75.15 58.31 100.00 31.69 100.00
except 84.24 68.51 100.00 49.30 100.00

fak 75.15 58.76 100.00 31.69 100.00
intrpt1 81.21 69.18 100.00 52.11 100.00
jump1 75.15 60.75 100.00 31.69 100.00

loadstore_s 81.21 58.31 100.00 52.11 100.00
loadstore_su 81.21 58.31 100.00 52.11 100.00

mul_su 84.24 67.41 100.00 49.30 100.00
set_s 75.15 56.76 100.00 31.69 100.00
set_su 75.15 56.76 100.00 31.69 100.00
div32 75.15 57.87 100.00 31.69 100.00
mul32 75.15 55.65 100.00 31.69 100.00

system01 84.24 66.74 100.00 49.30 100.00
all_instr 84.24 76.50 100.00 55.63 100.00

Cumulative 87.27 91.57 100.00 59.15 100.00
µGPSC 88.48 96.01 100.00 90.85 100.00
µGPTA 84.24 70.29 100.00 49.30 100.00

Table 17: DLX Statement Coverage Breakdown

Table 17 further details the comparison, showing statement coverage figures

for the 5 stages of the pipeline: instruction fetch (IF), decode (DEC), execution (EXE),

memory access (MEM), and write-back (WB). Remarkably, the induced test program

outperform all other programs in all stages. The all_instr program, carefully designed

to exhaustively test all possible instructions, is unable to thoroughly verify pipeline

stages and attains a statement coverage below 80%. The statement coverage attained

by the test program generated by our automatic method is nearly 15% higher.

Obviously, further increase in the attained figure may be prevented by the existence of

unreachable piece of code in the model.

Considering the gate-level toggle activity, it can be maintained that reaching

high figures is an even more challenging task. Designers can hardly foresee the

efficacy of a functional test program with regards to gate-level toggle activity.

Furthermore, the effect of interactions between simultaneously executed instructions

is even more manifest. Executing all instructions, as in the all_instr, is far not enough

to verify all possible functionalities.

 High Level Test of Electronic Systems - Microprocessor Test

72

Toggle Activity [%] Program IF DEC EXE MEM WB
arith_s 38.35 35.25 9.70 38.86 80.53

carry_su 31.16 32.77 8.25 36.39 82.74
except 35.05 26.77 9.50 37.44 54.87

fak 29.43 26.77 8.88 29.38 36.28
intrpt1 27.91 19.07 7.04 24.29 31.86
jump1 48.95 29.20 10.02 32.95 49.56

loadstore_s 42.03 31.28 10.83 56.60 91.59
loadstore_su 41.19 29.65 10.08 45.19 61.50

mul_su 30.33 24.31 8.48 25.85 34.07
set_s 31.58 35.10 10.95 36.66 82.74
set_su 31.90 36.89 11.02 36.66 82.74
div32 34.99 27.37 9.93 35.29 69.47
mul32 35.26 29.74 9.97 39.37 69.47

system01 34.73 26.44 9.48 36.48 52.65
all_instr 41.61 41.06 10.90 53.71 85.84

Cumulative 55.14 64.01 13.42 65.49 91.59
µGPSC 37.93 46.74 11.39 43.26 82.74
µGPTA 68.26 95.57 86.24 80.61 86.28

Table 18: DLX Toggle Activity Breakdown

Table 18 details the results against pipeline stages. It should be noted that none

of the proposed programs is able to toggle more than 50% of the decode stage (DEC),

while the induced test program surpasses 95%.

4.2.7.3 LEON P1754

Experiments on LEON target at devising test programs for maximizing RT-

level statement coverage, only.

LEON P1754 is the commercial name of a synthesizable VHDL model of the

32-bit SPARC-V8 microprocessor [SPARC]. It was initially developed by the

European Space Agency (ESA). The LEON P1754 implements 90 instructions: 20

arithmetic or logic ones, 6 branch, 18 special, 25 load/store and 21 floating point.

Only two addressing modes are supported: addresses can be specified either as

“register plus register” or “register plus immediate”. The adopted LEON contains a 5-

stage pipeline, an internal floating-point unit, and two separate, direct-mapped caches

of 2KBytes each for instructions and data. The RT-level description of the

microprocessor is about 3K statements long.

 High Level Test of Electronic Systems - Microprocessor Test

73

Program INST CLK SC[%]
TB 4,964 102,888 73.56

fib100 28 30,072 67.86
random 571 1,264 65.90

µGP 47 531 74.28

Table 19: LEON Statement Coverage summary

The instruction library for the LEON P1754 consists in 230 entries: prologue,

epilogue, 118 sequential operations and 110 conditional branches. As above, listing

instructions and their syntax was a trivial task.

Unit Statement Coverage [%]
Name STM FIB RND TB µGP
acache 117 93.16 92.31 94.02 94.87
ahbarb 92 91.30 91.30 91.30 91.30
apbmst 38 100.00 100.00 100.00 100.00

cachemem 30 100.00 100.00 100.00 100.00
dcache 265 73.21 65.28 83.40 84.15
icache 135 89.63 89.63 98.52 98.52
ioport 52 90.38 73.08 98.08 90.38
irqctrl 49 89.80 89.80 95.92 89.80

iu 1,400 59.86 59.57 64.21 67.00
lconf 24 83.33 83.33 83.33 83.33

mcore 31 90.32 90.32 90.32 90.32
mctrl 368 59.51 55.43 63.04 69.84
uart 140 59.29 56.43 85.00 56.43

Table 20: LEON Statement Coverage Breakdown

Table 19 reports 4 programs in terms of: number of instructions (INST), clock

cycles required for execution (CLK), and attained RT-level statement coverage (SC).

Considered programs include a functional test bench provided by LEON designers

(TB), a routine for calculating the first 100 numbers in the Fibonacci series (fib100),

and a test program induced with the proposed approach (µGP). For the sake of

comparison, 5,000 random programs of 1K instructions were generated and evaluated;

the result attained by the best one is reported in row (random). For devising the test

program, the µGP requires the simulation of about 5,000 programs, corresponding to

about two days on a Sun Enterprise 250 with an UltraSPARC-II CPU at 400MHz, and

2GB of RAM.

 High Level Test of Electronic Systems - Microprocessor Test

74

The first striking fact is that the induced test program is able to attain a

statement coverage slightly superior to the one achieved by the test bench using 10%

of the instructions and 0.5% of the execution time.

Table 20 details statement coverage figures against the main modules of

LEON: interface between I/D cache controllers and AMBA Advanced High-speed

bus (acache); AMBA arbiter and decoder (ahbarb); AMBA AHB/APB bridge

(apbmst); ram cells for both instruction and data caches (cachemem); data cache

controller (dcache); instruction cache controller (icache); parallel I/O port (ioport);

interrupt controller (irqctrl); integer unit (iu); configuration register (lconf); standard

peripherals and LEON core (mcore); external memory controller (mctrl);

asynchronous UART (uart).

The induced program shows a lower efficacy on the irqctrl block than TB.

This can be easily explained, since interrupts can not be induced by the actual version

of the test-program generator. Indeed, induced test-program efficacy on irqctrl is

equal to fib100 and random. On the uart the result attained by the induced program is

superior to both fib100 and random, but inferior to the one attained by the test bench.

Possibly, the generator was not given enough time to devise more efficient programs.

On the other hand, the induced test program attains the best results testing the cache

interface, the integer unit, and the external memory controller, showing its capability

to handle complex interactions inside pipeline stages.

 High Level Test of Electronic Systems - Conclusions

75

5 Conclusions

Due to the wide adoption of logic synthesis tools, RT-level ATPG techniques

are increasingly important in order to shift test-related activities towards the

description level adopted by designers. A crucial point for developing effective high-

level ATPGs lies in the identification of a suitable fault model, which should

guarantee a good correlation with gate-level fault coverage figures while allowing the

implementation of an ATPG algorithm.

In Chapter 2 the RT-level Single-bit Stuck-at fault model is described. This

fault model, thanks to a careful identification of redundancies removed by synthesis,

is shown to be highly correlated with Gate-level fault coverage. This allows designers

to predict circuit testability before synthesis.

In the same Chapter is described an approach to fault simulation of RT-level

description based on exploiting the existing debug mechanisms of commercial VHDL

simulators. With a relatively moderate effort, an effective fault simulator can be built

by properly programming a VHDL simulator. The implemented fault simulation

system is able to simulate a refined version of the widely used observability-enhanced

statement coverage metric, where observability is explicitly taken into account in an

exact manner.

Experimental results prove the feasibility of the approach, and show that

access to the source code of a VHDL simulator or modifications of the VHDL code

are not necessary in order to compute faulty responses from a digital circuit. The

efficiency of VHDL simulation cores and the versatility of their user interfaces open

up the possibility of greatly optimizing the efficiency of this approach.

Another crucial point for developing effective high-level test signal generator

is the availability of a suitable algorithm for test generation.

 High Level Test of Electronic Systems - Conclusions

76

In Chapter 3 the RT-level Single-bit Stuck-at fault model is exploited to

describe a methodology for generating high quality test signals: ARPIA. The

approach exploits an evolutionary algorithm to drive the search of effective patterns

within the gigantic space of all possible signal sequences. ARPIA operates on

register-transfer level VHDL descriptions and generates effective test patterns.

Being an evolutionary algorithm, ARPIA evolves a population seeking fitter

individuals. But, since individuals are test sequences for a digital circuit, the fitness

measures the sequence ability to detect faults in the design. And it is computed by

simulation. Given a fault model, the fault coverage is defined as the percentage of

faults that the test sequence is able to detect. Thus, the goal of ARPIA can be

rephrased as “generate a sequence of signals that attains maximum fault coverage.”

Experimental results on the ITC99 RT-level benchmarks show that the

achieved results are comparable or better than those obtained by high-level similar

approaches or even by gate-level ones.

The issue of System On a Chip (SOC) testing is one of the most crucial in

their design and production process. A popular solution for SOCs including

microprocessor cores is based on letting them execute a test program, thus

implementing a very attracting BIST solution. Chapter 4 describes two methodologies

for generating test programs for microprocessors and microcontrollers: a semi-

automatic and an automatic one.

The semi-automatic methodology (Section 4.1) requires the availability of a

small library of macros, whose development should be performed by hand, based on

the mere knowledge of the instruction set.

The main novelty of this approach lies in the fact that it only relies on the RT-

level description of the device, and does not exploit any knowledge about lower-level

implementation details. An optimization algorithm is outlined for selecting the

minimal subset of macros, and their parameters. The algorithm entirely works on the

RT-level description, exploiting a suitable RT-level fault model.

Experimental results gathered on the Intel 8051 microcontroller using a

prototypical implementation of the method show that the generated test program

attains higher fault coverage figures (in terms of gate-level stuck-at faults) than the

 High Level Test of Electronic Systems - Conclusions

77

test program generated starting from the gate-level description, with a comparable

computational effort, thus demonstrating the practical viability of the approach.

Section 4.2 describes the automatic methodology, an efficient and versatile

approach to test-program generation based on an evolutionary algorithm. This

methodology is able to automatically induce an assembly test program for

microprocessor tackling complex pipelined designs. The methodology exploits a loose

coupling between a generator and an evaluator, and can be used to induce test

programs with different goals, i.e., maximizing diverse verification metric.

First, the method includes the ability to explicitly specify registers either as

operands or targets. Furthermore, it relaxes the usual tree-based representation,

resorting to DAG. Finally, it couples a standard GP approach with a database

containing the assembly-level semantic associated to DAG nodes.

Exploiting DAG and library the proposed approach is extremely efficient and

versatile. Candidate solutions are translated into source-code programs that can be

assembled and linked using standard compilers. Such executable programs allow a

fast evaluation: millions of runs may be performed in just a second.

Moreover, the approach is versatile. The instructions library allows changing

the target µP and environment easily. The approach was verified on three processors

with different instruction sets, different formalisms and different conventions.

This automatic methodology can be seen as a general enhancement of standard

GP; however it was specifically devised for inducing test-program for µP cores, a

critical area in modern industry.

Prototypes of both generator and evaluator were built and exploited to

generate test programs against two pipelined microprocessors: a DLX/pII (a 5-stage

pipelined implementation of the DLX microprocessor) and a LEON P1754 (a 5-stage

pipelined, synthesizable, 32-bit SPARC-V8 processor). Test programs were devised

trying to maximize two different metrics: RT-level statement coverage and gate-level

toggle activity.

Induced test programs outperformed other approaches and surpass the

(supposedly) exhaustive test benches provided by designers. Thus, in acceptable

 High Level Test of Electronic Systems - Conclusions

78

computation effort, engineers could get high-quality test programs exploitable in a

simulation-based verification process.

 High Level Test of Electronic Systems - References

79

6 References

[AABH99] J. Shen, J. Abraham, D. Baker, T. Hurson, M. Kinkade, “Functional verification of

the Equator MAP1000 microprocessor”, 36th Design Automation Conference, 1999,

pp. 169 -174

[ABFr90] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital systems testing and testable

design, Computer Science Press, 1990

[BaPa99] K. Batcher, C. Papachristou, “Instruction Randomization Self Test For Processor

Cores”, IEEE VLSI Test Symposium, 1999, pp. 34-40

[Beiz90] B. Beizer, Software Testing Techniques (2nd ed.), Van Nostrand Rheinold, New

York, 1990

[BHSc91] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strategies”,

Proceedings of the Fourth International Conference on Genetic Algorithms, 1991,

pp. 2-9

[BiMa95] U. Bieker and P. Marwedel, “Retargetable self-test program generation using

constraint logic programming,” 32nd Design Automation Conference, 1995, pp. 605 –

611

[CCSS00] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “An RT-level Fault Model

with High Gate Level Correlation,” IEEE International High Level Design Validation

and Test Workshop, November 8-10, 2000

[CCSS00a] F. Corno, G. Cumani, M. Sonza Reorda, Giovanni Squillero, “RT-level Fault

Simulation Techniques based on Simulation Command Scripts,” DCIS 2000: XV

Conference on Design of Circuits and Integrated Systems, November 21-24, 2000

[ChDe00] L. Chen, S. Dey, “DEFUSE: A Deterministic Functional Self-Test Methodology for

Processors”, IEEE VLSI Test Symposium, 2000, pp. 255-262

 High Level Test of Electronic Systems - References

80

[CPRS96] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, “GATTO: a Genetic

Algorithm for Automatic Test Pattern Generation for Large Synchronous Sequential

Circuits”, IEEE Transactions on Computer-Aided Design, August 1996, Vol. 15, No.

8, pp. 943-951

[CSSq00] F. Corno, M. Sonza Reorda, G. Squillero, “Exploiting ITC’99 benchmarks for

developing an RT-level ATPG tool”, IEEE Design & Test, Special issue on

Benchmarking for Design and Test, June 2000, pp. 44-53

[CSSq00a] F. Corno, M. Sonza Reorda, G. Squillero, “High-Level Observability for Effective

High-Level ATPG,” VTS2000: 18th IEEE VLSI Test Symposium, May 2000,

pp. 411-416

[CSSq01] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, "On the Test of

Microprocessor IP Cores", DATE, IEEE Design, Automation & Test in Europe

Conference, 2001, pp. 209-213

[CSSV01] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, “On the Test of

Microprocessor IP Cores”, IEEE Design, Automation & Test in Europe, 2001, pp.

209-213

[DGke96] S. Devadas, A. Ghosh, K. Keutzer, “An Observability-Based Code Coverage Metric

for Functional Simulation,” Proceedings IEEE/ACM International Conference on

Computer Aided Design, 1996

[DGKe96] S. Devadas, A. Ghosh, K. Keutzer, “An Observability-Based Code Coverage Metric

for Functional Simulation,” Proceedings IEEE/ACM International Conference on

Computer Aided Design, 1996

[FADe99] F. Fallah, P. Ashar, S. Devadas, “Simulation Vector Generation from HDL

Descriptions for Observability-Enhanced Statement Coverage,” Proceedings 35th

Design Automation Conference, 1999, pp. 666-671

[FDKe98] F. Fallah, S. Devadas, K. Keutzer, “OCCOM: Efficient Computation of

Observability-Based Code Coverage Metrics for Functional Verification,” DAC98:

34th Design Automation Conference, 1998

[FFFFS01] G. Ferrara, F. Ferrandi, A. Fin, F. Fummi, D.Sciuto, “Functional Test Generation for

Behaviorally Sequential Models”, Proceedings IEEE Design Automation and Test in

Europe Conference (DATE), Muenchen, Germany, 13-16 Marc 2001, pp.403-410.

 High Level Test of Electronic Systems - References

81

[FFGS99] F. Ferrandi, F. Fummi, L. Gerli, D. Sciuto, “Symbolic Functional Vector Generation

for VHDL Specifications,” DAC99: 35th Design Automation Conference, 1999,

pp. 442-446

[FFSc98] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test Generation for Behavioral VHDL

Models,” Proceedings IEEE International. Test Conference, 1998

[FiFu00] A. Fin, F. Fummi, “A VHDL Error Simulator for Functional Test Generation,” IEEE

European Design, Automation and Test Conference, 2000, pp. 390-395

[Fried58] R. M. Friedberg, “A Learning Machine: Part {I)”, IBM Journal of Research and

Development, 1958, vol. 2, n. 1, pp 2-13

[FSMu98] A. Fukunaga, A. Stechert, D. Mutz, “A genome compiler for high performance

genetic programming”, Genetic Programming 1998: Proceedings of the 3rd Annual

Conference, 1998, pp. 86-94

[GSHA00] A. Giani, S. Sheng, S. Hsiao, I. Agrawal, “Compaction-Based Test Generation Using

State and Fault Information”, in Proceedings Asian Test Symposium, pp. 159-164,

2000

[Hand94] S. Handley, “On the use of a directed acyclic graph to represent a population of

computer programs”, Proceedings of the 1994 IEEE World Congress on

Computational Intelligence, 1994, pp 154-159

[HeDu01] J. R. Heath, S. Durbha, “Methodology for synthesis, testing, and verification of

pipelined architecture processors from behavioral-level-only HDL code and a case

study example”, Proceedings IEEE SoutheastCon 2001, 2001, pp. 143-149

[HePa] J.L. Hennessy, D.A. Patterson, “DLX architecture”, in Computer Architecture, a

Quantitative Approach, Morgan Kaufmann Publishers.

[KFKB98] S. Klahold, S. Frank, R. E. Keller, W. Banzhaf, “Exploring the possibilites and

restrictions of genetic programming in Java bytecode”, Late Breaking Papers at the

Genetic Programming 1998 Conference, 1998

[Koza98] J. R. Koza, “Genetic programming”, Encyclopedia of Computer Science and

Technology, vol. 39, Marcel-Dekker, 1998, pp. 29-43

[KPGZ02] N. Kranitis, A. Paschalis, D. Gizopoulos, Y. Zorian, “Effective software self-test

methodology for processor cores”, IEEE Design, Automation & Test in Europe,

2002, pp. 592-597

 High Level Test of Electronic Systems - References

82

[LeSi91] D. C. Lee, D. P. Siewiorek, “Functional test generation for pipelined computer

implementations”, 21st International Symposium on Fault-Tolerant Computing,

1991, pp. 60 67

[LHMo98] E. Lukschandl, M. Holmlund, E. Moden, “Automatic evolution of Java bytecode:

First experience with the Java virtual machine,” Late Breaking Papers at

EuroGP’98: the First European Workshop on Genetic Programming, 1998, pp 14-16

[NCPa92] T.M. Niermann, W.-T. Cheng, J.H. Patel, “PROOFS: A Fast, Memory-Efficient

Sequential Circuit Fault Simulator”, IEEE Trans. on CAD/ICAS, Vol. 11, No. 2,

February 1992, pp. 198-207

[Nord94] P. Nordin, “A compiling genetic programming system that directly manipulates the

machine code,” Advances in Genetic Programming, 1994, pp. 311-331

[PaHe96] D. A. Patterson and J. L. Hennessy, Computer Architecture - A Quantitative

Approach, (second edition), Morgan Kaufmann, 1996

[PITC99] High Time for High-Level Test Generation, Panel at the IEEE International Test

Conference, 1999, pp. 1112-1119

[PJAV02] L.M. Patnaik, H.S. Jamadagni, V.K. Agrawal, B.K.S.V.L. Varaprasad, “The state of

VLSI testing”, IEEE Potentials , Volume: 21 Issue: 3 , 2002, pp. 12 -16

[PMNo99] C.A. Papachristou, F. Martin, M. Nourani, “Microprocessor Based Testing for Core-

Based System on Chip”,ACM/IEEE Design Automation Conference, 1999, pp. 586-

591

[Poli97] R. Poli, “Evolution of graph-like programs with parallel distributed genetic

programming”, Genetic Algorithms: Proceedings of the 7th International Conference,

1997, pp 346-353

[RiUc96] T. Riesgo, J. Uceda, “A Fault Model for VHDL Descriptions at the Register Transfer

Level,” Proceedings of EURO-DAC/EURO-VHDL, 1996

[RLJh98] S. Ravi, G. Lakshminarayana, and N. K. Jha, “TAO: Regular expression based high-

level testability analysis and optimization”, in Proceedings International Test

Conference, pp. 331–340, 1998

[SATa96] A. E. Salama, A.K. Ali, E. A. Talkhan, “Functional testing of pipelined processors”,

IEE Proceedings on Computers and Digital Techniques, vol. 143, issue 5, September

1996, pp. 318-324

 High Level Test of Electronic Systems - References

83

[ScKu98] H.-P. Schwefel, F. Kursawe, “On Natural Life’s Tricks to Survive and Evolve”,

Proceedings of the 1998 IEEE International Conference on Evolutionary

Computation, 1998, pp. 1-8

[SGTT00] M. B. Santos, F. M. Gonçalves, I.C. Texeira, J. P. Texeira, “RTL-Based Functional

Test Generation for High Defects Coverage in Digital SOCs”, IEEE European Test

Workshop, 2000, pp. 99-104

[ShAb98] J. Shen and J.A. Abraham, “Native Mode Functional Test Generation for Processors

with Applications to Self Test and Design Validation”, International Test

Conference, 1998, pp. 990-999

[ShSu88] L. Shen, S. Y. H. Su, “A functional testing method for microprocessors”, IEEE

Transactions on Computers, vol. 37, issue 10, October 1988, pp. 1288-1293

[SPARC] SPARC International, The SPARC Architecture Manual

[TAZa99] P. A. Thaker, V. D. Agrawal, M. E. Zaghloul, “Validation Vector Grade (VVG): A

New Coverage Metric fo Validation and Test,” Proceedings 15th IEEE VLSI Test

Symposium, 1997, pp. 182-188

[ThAb80] S. Thatte, J. Abraham, “Test Generation for Microprocessors”, IEEE Transactions on

Computers, Vol. C-29, June 1980, pp. 429-441

[UBSh99] N. Utamaphethai, R.D. Blanton and J.P. Shen, “Superscalar Processor Validation at

the Microarchitecture Level”, 12th IEEE International Conference on VLSI Design,

1999, pp. 300-305

